The goal of this project is to establish data sets to evaluate the Aquatic Recreational Use of Mallard, Sucker, and Ozawindib Lakes in southeastern Clearwater County.
The goal of this project is to complete a two-year data set for physical, bacterial, and water chemistry sampling for the Intensive Watershed Monitoring Plan to aid MPCA’s assessment of the aquatic health of the Mississippi Headwaters(HUC 07010101) Watershed.
The grant will use local data to develop stormwater planning options that prioritize, target, and measure the effectiveness of Best Management Practices and allow local city officials to make decisions on stormwater Best management Practices that reduce pollutants in the stormwatershed.
The AgBMP Loan Program provides needed funding for local implementation of clean water practices at an extremely low cost, is unique in its structure and is not duplicated by any other source of funding.The AgBMP loan program provides 3% loans through local lenders to farmers, rural landowners, and agriculture supply businesses.
The goal of this project is to use the We Are Water MN exhibit and their technical knowledge in relationship-building and storytelling to increase community capacity for sustainable watershed management in the Cannon River, Cedar River, Mississippi-Headwaters, Mississippi-Grand Rapids, Mississippi-Twin Cities, Red Lake River, Rum River and St. Louis River watersheds.
Ramsey-Washington Metro Watershed District (RWMWD) will improve water quality in Casey Lake and ultimately Kohlman Lake through the installation of approximately 25 rain gardens on priority properties identified as part of the Casey Lake Urban Stormwater Retrofit Assessment completed by Ramsey Conservation District (RCD) in 2011.
This monitoring project includes lake and stream monitoring and encompasses all of Cass County, and surrounding counties. The project will obtain water quality data for streams; in 2009, lakeshed assessments indicated that many surface waters throughout the county were data deficient. This project will address the need for sufficient data on a county-wide basis and fulfill the State’s intensive watershed monitoring program goals by obtaining water quality data at targeted lake and stream sites.
This project will complete spatial and temporal revisions , recalibration and validation of 7 watershed HSPF models. These fully functioning calibrated validated executable models will simulate hydrology, sediment (sand, silt, and clay), temperature, phosphorus, nitrogen, dissolved oxygen, biochemical oxygen demand, and algae at the 12-digit HUC subbasin scale (or finer).
This project will construct, calibrate, and validate three HSPF watershed models. The consultant will produce HSPF models that can readily be used to provide information to support conventional parameter TMDLs. The consultant will clearly demonstrate that these models generate predicted output time series for hydrology, sediment, nutrients, and dissolved oxygen which are consistent with available sets of observed data.
This project will complete spatial and temporal revisions of 6 Hydrologic Simulation Program FORTRAN (HSPF) models, the recalibration and validation of 7 watershed HSPF models, and the revision of the drainage network and point source representation of the Pomme de Terre HSPF model.
Pasture and hayland account for 62% of the agricultural land use in Clearwater County. In 2012, it was the 12th largest producer of beef cattle in Minnesota. In a county where 22% of pasture/hayland acres are within 300 feet of riparian areas, management practices need to be introduced that enhance rather than restrict the farm operations that use these zones for their livelihood. Clearwater County's Silver Creek and Ruffy Brook are currently listed as impaired by fecal coliform.
This project will implement five stormwater control BMPs and educate watershed landowners regarding proper management of stormwater control. These projects will serve to change behavior and perceptions of how stormwater may be managed, and demonstrate how easy changes may have a positive impact on land stewardship and water quality protection. 100 rain barrels will be distributed at a reduced cost to critical landowners.
This Phase 1 project will support project planning, coordination and civic engagement/outreach components of the Mississippi River (Headwaters) Major Watershed project. Phase 1 of this project will focus towards the development of project teams, identifying stakeholders, developing an initial civic engagement strategic plan and reviewing current and past watershed project data.
The goal of this project is complete a dataset necessary for assessment of 6 stream sites and 11 lakes within the Mississippi Headwaters Watershed to determine the overall health of its water resources, to identify impaired waters, and to identify those waters in need of additional protection to prevent future impairments.
Several important milestones will be completed during this phase of the Mississippi River (Headwaters) Watershed Restoration and Protection Strategy (WRAPS) project. These milestones will include the completion of the Stressor ID & Watershed Monitoring and Assessment Reports, the completion of the Zonation Modeling watershed priority planning process (through the continuation of the Civic Engagement project component), and the development of the overall WRAPS report.
This project supports monitoring and assessment activities by MPCA EAO staff and includes lab analysis, equipment, and fieldwork expenses associated with monitoring and assessment activities within the described priority watersheds.
Lake Monitoring: Lakes are monitored for nutrients, clarity and other information to provide the data needed to assess the aquatic recreation use support.
This project supports monitoring and assessment activities by MPCA EAO staff and includes lab analysis, equipment, fieldwork, data management, and interpretation expenses associated with monitoring and assessment activities.The ambient groundwater monitoring network describes the current condition and trends in Minnesota's groundwater quality.
This project supports monitoring and assessment activities by MPCA EAO staff and includes lab analysis, equipment, fieldwork, data management, and interpretation expenses associated with monitoring and assessment activities.The ambient groundwater monitoring network describes the current condition and trends in Minnesota's groundwater quality.
Approximately 70 percent of all Minnesotans rely on groundwater as their primary source of drinking water. Wells used for drinking water must be properly sealed when removed from service to protect both public health and Minnesota’s invaluable groundwater resources. The Minnesota Department of Health protects both public health and groundwater by assuring the proper sealing of unused wells.
Clean Water funds are being provided to well owners as a 50% cost-share assistance for sealing unused public water-supply wells.
The goal of this project is the continued development of an overall strategy for reduction of turbidity/TSS, with sets of sediment reduction initiatives and actions for various sources, to address the Minnesota River Turbidity TMDL and the South Metro Mississippi River TSS TMDL. The overall strategy will be used to help establish a path towards achieving the required reductions of turbidity/TSS.
A new GIS technician will help prioritize and target conservation activities and protection strategies in nine north-central Minnesota counties. The GIS technician will create GIS products, assessments, and watershed analysis to identify the high priority areas in each County or watershed in need of protection or restoration using all available data, including LiDAR, soils, land use, completed WRAPS and other datasets. These areas will then be targeted for future resource management efforts, Clean Water Fund projects, and additional conservation activities.
This project will provide the monitoring of reaches where there are data gaps, incorporate new data and analyze relevant data, identify pollutant sources, hold a stakeholder meeting, and gather information towards the future development of a Draft Restoration (TMDL) and Protection Plan.
This project will extend, calibrate, and validate watershed models using the Hydrological Simulation Program - FORTRAN (HSPF) watershed model for the Mississippi Headwaters, Leech Lake, Pine, and South Fork Crow Watersheds.
The primary goal of this project is to examine the calibration and validation of recently extended Hydrological Simulation Program – FORTRAN (HSPF) watershed models for the Mississippi River-Headwaters, Mississippi River-Grand Rapids, Mississippi River-Brainerd, Mississippi River-Sartell, Mississippi River-St. Cloud, Leech Lake, Pine River, Crow Wing River, Long Prairie River, and Redeye River watersheds and revise the calibration.