The goal of the project is the development of an overall strategy for reduction of turbidity/TSS, with sets of sediment reduction initiatives and actions for various sources, to address the Minnesota River Turbidity TMDL and the South Metro Mississippi River TSS TMDL.
The goal of this project is to perform water quality monitoring and load calculation duties to accomplish MPCA's Watershed Pollutant Load Monitoring Network monitoring efforts at seven sites for the Redwood and Cottonwood River watersheds as well as the Minnesota River site near Morton.
This project will monitor six sites within the Minnesota River Basin: Hawk Creek near Maynard, Hawk Creek near Granite Falls, Beaver Creek near Beaver Falls, Yellow Medicine River near Granite Falls, Yellow Medicine River near Hanley Falls, and Spring Creek near Hanley Falls. The sites will be monitored according to MPCA’s Major Watershed Load Monitoring (WPLMN) Standard Operating Procedure, which is the procedure being followed for sites currently monitored by the Hawk Creek Watershed Project (HCWP).
This project proposes significant improvements to the City of Bloomington's Anti-Icing/Brine making capabilities. The use of anti-icing technology reduces the amount of salt needed to clear snow and ice from city street. The improvements work to address the chloride impairment in Nine Mile Creek and the metro area by reducing the amount of salt applied to the streets and thereby reducing the amount of chlorides entering our surface water systems.
The AgBMP Loan Program provides needed funding for local implementation of clean water practices at an extremely low cost, is unique in its structure and is not duplicated by any other source of funding.The AgBMP loan program provides 3% loans through local lenders to farmers, rural landowners, and agriculture supply businesses.
Peer Engineering, Inc. (Peer) will evaluate and recommend to MPCA groundwater monitoring staff prospective sites/locations for the installation of groundwater monitoring wells to evaluate contaminant/pollutant concentrations from various sources. Peer will oversee the installation of monitoring wells by retaining a state drilling contractor or preparing bid documents to retain well driller through the Department of Administration. Superfund staff will assist in the project by providing oversight of contractual requirements and provide technical assistance as needed.
This project will complete the installation of four nested wells to the Ambient Groundwater Monitoring Network and relocated one well in the City of Saint Paul. Braun Intertec will coordinate site access and oversee the well installation by a state drilling contractor.
The goal of this project is to use the We Are Water MN exhibit and their technical knowledge in relationship-building and storytelling to increase community capacity for sustainable watershed management in the Cannon River, Cedar River, Mississippi-Headwaters, Mississippi-Grand Rapids, Mississippi-Twin Cities, Red Lake River, Rum River and St. Louis River watersheds.
This project will provide condition monitoring and problem investigation monitoring at the following sites.
Mississippi River: Tributaries include Bassett Creek, Cannon River, Crow River, and Minnehaha Creek.
Minnesota River: Tributaries include Eagle Creek,Riley Creek, and Valley Creek tributary to the St. Croix River
This project will support updates to the Draft Bald Eagle Lake TMDL. The updates will address comments received during the public comment period. The comments resulted in the development of individual Wasteload Allocations for stormwater sources in the Bald Eagle Lake watershed.
The Plymouth Creek Restoration Project will improve water quality in Plymouth Creek and Medicine Lake, the creek's primary receiving water. The project will reduce total phosphorus and suspended sediment in Plymouth Creek and Medicine Lake stemming from streambank erosion. Streambank erosion is a common source of pollution, particularly in developed landscapes where flows in streams are considered flashy and can easily scour unprotected and disturbed streambanks.
This project engages private property owners including non-profits, businesses, and institutions, in the Harrison Neighborhood of Near North Minneapolis to install storm water best management practices. The BMPs will reduce pollution in Bassett Creek including chlorides and bacteria, for which the creek is impaired. The primary focus is on Glenwood Avenue, a focal point in the community and a highly impervious area.
Installation of a 43,000 sf infiltration gallery in Becker Park in the City of Crystal to infiltrate 0.5 inches of runoff from a 147 acre currently untreated mixed use subwatershed with 51% impervious surface. The project will reduce total phosphorus to Impaired Water Upper Twin Lake by 118 pounds annually, and reduce street flooding on Bass Lake Road (Hennepin County Road 10).
This Total Maximum Daily Load (TMDL) project will develop a TMDL Report and Implementation Plan defining the sources contributing to the impairments and outlining the steps necessary to bring Bluff Creek back to meeting water quality standards.
This project will develop a Final TMDL report and Implementation Plan for the Bluff Creek Watershed. The main outcomes of this project are the development of a Final TMDL Report approved by MPCA and EPA and a Final Implementation Plan approved by MPCA.
The Villa Park Wetland Restoration Project proposes sediment removal from 6 contiguous stormwater wetland treatment cells within the Villa Park Wetland system resulting in an additional 118lbs/yr of total phosphorus(TP) removal from water entering Lake McCarrons.
The City of Minnetonka and its residents highly value the water resources within the community, which include approximately ten lakes, four streams, and hundreds of wetlands. The City has been progressive in protecting these resources through policies and management strategies, and now wants to increase their on-the-ground efforts in protecting and improving water quality. The City hopes to conduct targeted watershed assessments for fourteen selected priority water bodies to identify and optimize the type and locations of Best Management Practices (BMPs) to be installed.
This project is the ecological restoration of 1,400 feet of Shingle Creek, an Impaired Water for low dissolved oxygen and impaired biota, in Brooklyn Center and Brooklyn Park. The Shingle Creek Impaired Biota and Dissolved Oxygen Total Maximum Daily Load requires sediment oxygen demand load reductions and establishes restoration design standards to enhance habitat that will be incorporated into this project.
The Cottageville Park Water Quality Protection and Stream Restoration Project was developed to meet the goals of the Minnehaha Creek Watershed District and the City of Hopkins, including; water resource management, channel stabilization, stream enhancement, riparian corridor improvements, open space creation, park development, and revitalization. The project achieves these goals through implementation of the following:
This project will support a civic engagement cohort that will be offered in southwest Minnesota to foster partnering and build capacity of local government, organizations, and residents for effective civic engagement in water protection and restoration. This project will also build networks and the skill set of local resource professionals to do effective civic engagement work for water restoration and protection. The cohort will be administered through the Minnesota River Board (MRB), established in 1995 with a goal of focusing water management efforts on the local level.
This project will complete a comprehensive study, following a rational, step-wise process of data analysis, response modeling and comparison to the water quality standards, followed by impairment diagnosis, modeling of improvement and protection options, and development of a WRAP Report and Implementation Plan for Sunfish lake, Thompson lake, Pickerel lake, and Rogers lake.
This project will establish a framework and provide tools for local government and watershed projects to engage the public in a manner that will lead to water quality improvement through targeted and prioritized implementation of watershed management practices. The major components of the watershed approach that will be used for this project include; monitoring, gathering of watershed information, assessment of the data, develop of implementation strategies, and implementation of water quality protection and restoration activities.
This project approach will include monitoring and gathering of watershed information, assess the data, develop implementation strategies to meet standards and protect waters, implement water quality protection and restoration activities in the watershed. The goal of this project is to establish a framework, and to provide information and tools for local government and watershed organizations to engage the public in a manner that will lead to water quality improvement.
This project will complete a pollutant source identification and subwatershed information report and support the development of a Draft Restoration and Protection Plan (RAPP). It will also support the devlopment of a Implementation Plan that will identify target areas for BMP implementation for bacteria reductions.
This project will complete spatial and temporal revisions , recalibration and validation of 7 watershed HSPF models. These fully functioning calibrated validated executable models will simulate hydrology, sediment (sand, silt, and clay), temperature, phosphorus, nitrogen, dissolved oxygen, biochemical oxygen demand, and algae at the 12-digit HUC subbasin scale (or finer).
This project will provide the MPCA, CCWD, and all other stakeholders the information and tools necessary to improve the water quality within Coon Creek Watershed District. The improvements will take place using targeted activities throughout the watershed to reduce the primary biological and chemical stressors. In turn, the reduction of these stressors will help to reduce overall loadings of sediment, turbidity, total phosphorus, and E. coli bacteria.
The goal of this project is to develop a phosphorus TMDL for the six impaired lakes in the southwest portion of the Rice Creek Watershed District; Island Lake, Little Lake Johanna, Long Lake, East Moore Lake, Pike Lake and Lake Valentine.
This project will continue the offering of low-interest loans to citizens, some of whom may not be able to acquire funding otherwise, for upgrading 50 septic systems to ensure compliance with state rules. Grant funds will be used to administer the low-interest loan program.
Fish Lake is 238 acres and does not meet state water quality standards due to excessive nutrients. Through the Total Maximum Daily Load study, a recommendation was made to treat the lake with alum to achieve the state's water quality standards. The goal of this project is to reduce the phosphorus load to Fish Lake by 310 pounds per year and meet the needed phosphorus reduction goal. The project will be completed as a partnership between the Elm Creek Water Management Commission, Three Rivers Park District, the City of Maple Grove, and The Fish Lake Area Resident's Association.
The overall goal of this project is to perform water quality monitoring and load calculation duties to accomplish Minnesota Pollution Control Agency (MPCA) Watershed Pollutant Load Monitoring Network (WPLMN) monitoring efforts at the seven sites within the Redwood and Cottonwood River watersheds as well as the Minnesota River site near Morton. To accomplish this goal the requested funds will provide for technician’s time, mileage, lab costs, supplies, as well as equipment calibration and upkeep.
The GVCC Pond Excavation Project will remove approximately 2,500 cubic yards of accumulated polycyclic aromatic hydrocarbons (PAH) Level/Tier 3 contaminated sediment from the Golden Valley Country Club stormwater treatment pond.
This project will assess 4 lakes and 17 stream sites. The four lakes will be assessed for total phosphorus, chlorophyll-a, and secchi data by the HCWP staff. Staff will monitor East Twin, West Twin, West Solomon, and St. John’s Lakes for total phosphorus, chlorophyll-a, and Secchi disk readings. In order to obtain a sufficient dataset. Ten samples will be collected over 2 years. Water samples at 17 stream locations for chemical analyses, including intensive watershed monitoring sites and “non-target” sites.
The goal of this project is to extend the existing HSPF models through 2012 in the Chippewa Watershed (07020005) and Hawk-Yellow Medicine Watershed (07020004) to incorporate recent monitoring data to support current MPCA business needs and sediment source investigations.
This project will complete spatial and temporal revisions of 6 Hydrologic Simulation Program FORTRAN (HSPF) models, the recalibration and validation of 7 watershed HSPF models, and the revision of the drainage network and point source representation of the Pomme de Terre HSPF model.
The Minnesota River Basin Hydrological Simulation Program FORTRAN (HSPF) models simulate sediment erosion and transport, however these models periodically need to be adjusted to be consistent with the most recent sources of information regarding sediment distribution and loading rates. The goal of this project is to refine the sediment source partitioning and simulation in the Minnesota River basin using all relevant available sources of information.
The Minnesota River Basin Hydrological Simulation Program FORTRAN (HSPF) models, which simulate flow and pollutant transport, need to be refined to be consistent with the most recent external sources of land use, hydrologic response, and surface flow attributions. The primary goal of this work is to refine the hydrologic calibration in the Minnesota River basin.
The goal of this project is to finalize the Lake Pepin Watershed phosphorus total maximum daily load (TMDL) report by using the existing information and documentation prepared under previous contracts to prepare one TMDL report that addresses the impairments on the mainstem of the Mississippi River. Information developed to date for draft TMDLs on the Minnesota River mainstem will be documented for later use by the Minnesota Pollution Control Agency.
The goal of this project is to develop draft Total Maximum Daily Load (TMDL) computations for six impaired lakes and two impaired streams, and to provide TMDL development documentation for selected draft TMDL report sections.
This project will revise a recently completed draft Total Maximum Daily Load (TMDL) report for the Lower Minnesota River Watershed Project. The revision is to correct wasteload allocations for regulated stormwater entities.