The AgBMP Loan Program provides needed funding for local implementation of clean water practices at an extremely low cost, is unique in its structure and is not duplicated by any other source of funding.The AgBMP loan program provides 3% loans through local lenders to farmers, rural landowners, and agriculture supply businesses.
Peer Engineering, Inc. (Peer) will evaluate and recommend to MPCA groundwater monitoring staff prospective sites/locations for the installation of groundwater monitoring wells to evaluate contaminant/pollutant concentrations from various sources. Peer will oversee the installation of monitoring wells by retaining a state drilling contractor or preparing bid documents to retain well driller through the Department of Administration. Superfund staff will assist in the project by providing oversight of contractual requirements and provide technical assistance as needed.
The Beltrami SWCD proposes to partner with citizen and non-profit groups to complete projects that will reduce stormwater runoff and retain water on the land. The majority of the projects will be in the Lake Bemidji lakeshed which has recently been identified in the WRAPs project as being on the verge of impaired for nutrients. With the City of Bemidji being a regional hub for Northwestern Minnesota and the First City on the Mississippi, there are ample opportunities for citizen involvement and ample opportunities for stormwater improvements.
Beltrami County will be updating their water plan in 2017. This plan will be watershed protection oriented and will utilize all available data and maps in order to best protect our water resources. In 2012, Beltrami County completed screening on 19 of our large lakes with heavy land use development. What we found was that none of the lakes had enough chemical data for a trend analysis.
This project will produce a final Total Maximum Daily Load (TMDL) study and Watershed Restoration and Protection Strategy (WRAPS) report that will be utilized by local government units for water planning purposes during the Board of Water and Soil Resources One Water One Plan process for the Clearwater River Watershed.
The overall goal is to develop a Watershed Restoration and Protection Strategy (WRAPS) Report and Total Maximum Daily Load (TMDL) Study that will address water quality impairments and maintain or improve water quality throughout the Clearwater River watershed. The study will identify sources of pollutants to the streams and lakes, allocate pollution reduction goals, and prioritize and identify implementation strategies to maintain or improve water quality in key lakes and streams in the watershed.
This project will construct three watershed framework models built using the Hydrologic Simulation Program FORTRAN. These executable models will simulate hydrology at the 12-digit HUC subbasin scale. An HSPF model will be built for each of the following 8-HUC watersheds: Red Lake River (09020303) and the Clearwater River (09020305).
This project will complete a pollutant source identification and subwatershed information report and support the development of a Draft Restoration and Protection Plan (RAPP). It will also support the devlopment of a Implementation Plan that will identify target areas for BMP implementation for bacteria reductions.
This project will finalize HSPF watershed model construction and complete the calibration/validation process. The consultant will add representation of point source discharges to the model. The consultant will compile flow data for the purposes of calibration and validation. An initial hydrologic calibration will be performed and submitted for approval.
The goal of this project is to construct, calibrate, and validate five Hydrologic Simulation Program FORTRAN (HSPF) watershed models. The outcome will be HSPF models that can readily be used to provide information to support conventional parameter TMDLs. These models will generate predicted output timeseries for hydrology, sediment, nutrients, and dissolved oxygen which are consistent with available sets of observed data.
This project will support water quality monitoring and data analysis in the Red River Basin. The monitoring will assist in providing water chemistry data needed to calculate annual pollutant loads for the Major Watershed Load Monitoring Program (MWLMP) and provide short term data sets of select parameters to other MPCA programs.
Phase 1 of this project is primarily geared towards project planning and coordination among project partners, developing an initial civic engagement strategic plan, holding a watershed kick-off meeting, and gathering and summarizing available water quality data.
This project will develop a Watershed Restoration and Protection Strategy (WRAPS) report as well as Total Maximum Daily Load (TMDL) studies where needed. The TMDLs will provide the quantitative pollutant load reduction estimates and a set of pollutant reduction and watershed management strategies to achieve water quality standards for the impairments within the watershed. Strategies for protecting the unimpaired waters within the watershed will also be included.
The project goal is to conduct water chemistry monitoring at four subwatershed sites and one basin site in 2016, 2017, 2018 and 2019. Water chemistry monitoring will be conducted at a wide range of flow conditions with emphasis of collecting samples during periods of moderate and high flows after runoff events, as defined in the Watershed Pollutant Load Monitoring Network (WPLMN) Standard Operating Procedures and Guidance. The data collected will be submitted to the Minnesota Pollution Control Agency (MPCA) and used in the FLUX32 model for calculating pollutant loads.
Ninety percent of the land in Mower County is used for agriculture. The County ranks 10th and 13th in the State for corn and bean production, making much of the land vulnerable to erosion due to the planting of row crop. As a result, streams and ditches in the county see high sediment loads.
This purpose of this project is to evaluate the conditions of eight streams in the Cedar River Watershed and one site on the Wapsipinicon River. Monitoring will take place for two years. Mower Soil and Water Conservation District staff will collect samples following Minnesota Pollution Control Agency (MPCA) Intensive Watershed Monitoring (IWM) sample collection protocols and will organize and review all field and laboratory data, along with field notes and photos.
This project supports monitoring and assessment activities by MPCA EAO staff and includes lab analysis, equipment, fieldwork, data management, and interpretation expenses associated with monitoring and assessment activities.The ambient groundwater monitoring network describes the current condition and trends in Minnesota's groundwater quality.
This project supports monitoring and assessment activities by MPCA EAO staff and includes lab analysis, equipment, fieldwork, data management, and interpretation expenses associated with monitoring and assessment activities.The ambient groundwater monitoring network describes the current condition and trends in Minnesota's groundwater quality.
This project will support water quality monitoring and data analysis in nine major watersheds (8-digit Hydrologic Unit Codes) of the Lower Red River Basin. The monitoring will assist in providing water chemistry data needed to calculate annual pollutant loads for the Major Watershed Load Monitoring Program (MWLMP) and provide short term data sets of select parameters to other MPCA programs.
The goal of this project is to engage citizens in local watershed monitoring, work with regional partners to promote understanding and protection of watersheds, and organize and facilitate gathering of scientific data for the benefit of water quality in the Red River Basin.
The goal of this project is to engage citizens in local watershed monitoring, work with regional partners to promote understanding and protection of watersheds, and organize and facilitate gathering of scientific data for the benefit of water quality in the Red River Basin.
The Red Lake Watershed District will create an inspection database for 103E ditches under their drainage authority. The district will acquire a database software solution to conduct field inspections and to track ditch maintenance projects and use the software to facilitate compliance with state statutes. The project will also develop a process for completing the annual inspection and reporting requirements under Statue 103E.
The purpose of this project is to improve understanding of primary productivity in the Red River and the diversity and population structure of the algal communities occurring along the river system. This will be accomplished through taxonomic identification of periphyton and phytoplankton assemblages necessary for characterizing responses to nutrient gradients along the Red River of the North.
The goal of this project is to extend, calibrate, and validate the existing Hydrological Simulation Program – FORTRAN (HSPF) watershed models in the Red Lake River, Thief River, Clearwater River and Red Lake watersheds.
This project will develop an effective transferable model to engage and educate watershed residents, stakeholders and others to better understand and protect watershed ecostystems through environmental monitoring, training, and formal and informal education programs in their local watershed. The project will build on the foundation of the existing Red River Basin River Watch program by strengthening three main activity areas: 1) curriculum integration and teacher training, 2) youth leadership and civic engagement, and 3) applied research collaboration and watershed science skills building.
This project will monitor nine locations in the major watersheds (8-digit Hydrologic Unit Codes) of the Lower Red River Basin. The stream outlet monitoring will provide the water chemistry data needed to calculate annual pollutant loads. Staff from the Red River Watershed Management Board (RRWMB) will conduct the sampling, initially manage the data and provide the data to the Minnesota Pollution Control Agency (MPCA) for load calculations and import into the STORET data system.
MN Legislative Clean Water Fund funding to engage citizens in local watershed monitoring, work with regional partners to promote understanding and protection of watersheds, and organize and facilitate gathering of scientific data all for the benefit of water quality in the Red River Basin.
The International Water Institute (IWI) will monitor 42 sites (3 basin, 12 major watershed, and 27 subwatershed) in the Red River and Upper Mississippi River Basins intensively during 2016, 2017, 2018 and 2019. There will also be 5 sites in the Red River Basin where mercury samples will be collected in 2016 and 2017 and sent to Minnesota Department of Health for analysis. The IWI will collect water samples across the range of flow conditions targeting sample collection at times of moderate to high flow.
Approximately 70 percent of all Minnesotans rely on groundwater as their primary source of drinking water. Wells used for drinking water must be properly sealed when removed from service to protect both public health and Minnesota’s invaluable groundwater resources. The Minnesota Department of Health protects both public health and groundwater by assuring the proper sealing of unused wells.
Clean Water funds are being provided to well owners as a 50% cost-share assistance for sealing unused public water-supply wells.
The goal of this project is the continued development of an overall strategy for reduction of turbidity/TSS, with sets of sediment reduction initiatives and actions for various sources, to address the Minnesota River Turbidity TMDL and the South Metro Mississippi River TSS TMDL. The overall strategy will be used to help establish a path towards achieving the required reductions of turbidity/TSS.
Native trout require clean, cold water that usually originates from springs, but the springs feeding the 173 designated trout streams in southeastern Minnesota are under increasing pressure from current and expected changes in land use. This joint effort by the University of Minnesota and the Minnesota Department of Natural Resources is working to identify and map the springs and the areas that feed water to these springs and to learn how these waters might be affected by development and water use.
This monitoring project will complete assessments of 41 lakes found throughout Beltrami COunty and acquire sufficient data for state/local assessments and also assist with county water planning.
This project will provide the monitoring of reaches where there are data gaps, incorporate new data and analyze relevant data, identify pollutant sources, hold a stakeholder meeting, and gather information towards the future development of a Draft Restoration (TMDL) and Protection Plan.
The goal of this project is the completion of an Upper Mississippi River Bacteria Total Maximum Daily Load (TMDL) and Protection Plan. In addition, an Implementation Plan will be developed and finalized under this contract.
This project will support the monitoring of reaches where there are data gaps, incorporate new data and relevant data, continue identification of pollutant sources, complete load duration curves, coordinate and encourage participation in stakeholder meetings. The information gathered during Phase IIB will be utilized towards the development of a Draft Restoration (TMDL) and Protection Plan (Plan).
The primary goal of this project is to examine the calibration and validation of recently extended Hydrological Simulation Program – FORTRAN (HSPF) watershed models for the Mississippi River-Headwaters, Mississippi River-Grand Rapids, Mississippi River-Brainerd, Mississippi River-Sartell, Mississippi River-St. Cloud, Leech Lake, Pine River, Crow Wing River, Long Prairie River, and Redeye River watersheds and revise the calibration.
The West Central Technical Service Area (WCTSA) serves 12 Soil and Water Conservation Districts (SWCDs) in west central Minnesota and has been experiencing increased workload due to greater requests from member SWCDs. This funding will sustain a limited-term technician and purchase related support equipment to assist landowners in implementing targeted, high priority practices that result in the greatest water quality outcomes.