These funds are being used to systematically collect data and produce statistically valid estimates of the rate of soil erosion and tracking the adoption of high residue cropping systems in in the 67 counties with greater than 30% land in agricultural row crop production. Designed to establish a long term program in Minnesota to collect data and produce county, watershed, and state wide estimates of soil erosion caused by water and wind along with tracking adoption of conservation measures to address erosion.
These funds are being used to systematically collect data and produce statistically valid estimates of the rate of soil erosion and tracking the adoption of high residue cropping systems in counties with greater than 30% land in agricultural row crop production. Designed to establish a long term program in Minnesota to collect data and produce county, watershed, and state wide estimates of soil erosion caused by water and wind along with tracking adoption of conservation measures to address erosion.
The AgBMP Loan Program provides needed funding for local implementation of clean water practices at an extremely low cost, is unique in its structure and is not duplicated by any other source of funding.The AgBMP loan program provides 3% loans through local lenders to farmers, rural landowners, and agriculture supply businesses.
Peer Engineering, Inc. (Peer) will evaluate and recommend to MPCA groundwater monitoring staff prospective sites/locations for the installation of groundwater monitoring wells to evaluate contaminant/pollutant concentrations from various sources. Peer will oversee the installation of monitoring wells by retaining a state drilling contractor or preparing bid documents to retain well driller through the Department of Administration. Superfund staff will assist in the project by providing oversight of contractual requirements and provide technical assistance as needed.
This project will conduct a 2017 revision of the South Fork Crow River, North Fork Crow River and Sauk River Watershed Hydrological Simulation Program FORTRAN (HSPF) models and review of the Pine River Watershed HSPF model.
This project will support a civic engagement cohort that will be offered in southwest Minnesota to foster partnering and build capacity of local government, organizations, and residents for effective civic engagement in water protection and restoration. This project will also build networks and the skill set of local resource professionals to do effective civic engagement work for water restoration and protection. The cohort will be administered through the Minnesota River Board (MRB), established in 1995 with a goal of focusing water management efforts on the local level.
This project will complete a pollutant source identification and subwatershed information report and support the development of a Draft Restoration and Protection Plan (RAPP). It will also support the devlopment of a Implementation Plan that will identify target areas for BMP implementation for bacteria reductions.
BWSR will administer funding to eligible County projects that provide funds and other assistance to low income property owners to upgrade or replace Noncompliant Septic Systems. BWSR will also manage annual reporting completed by each County.
This project will support construction of three watershed framework models built using the Hydrologic Simulation Program FORTRAN (HSPF). These executable models will simulate hydrology at the subbasin scale. An HSPF model will be built for each of three major watersheds: the Crow River/North Fork Crow River, the South Fork Crow River, and the Sauk River.
This project will finalize HSPF watershed model construction and complete the calibration/validation process for the following three watersheds: North Fork Crow River, South Fork Crow River, and Sauk River.
The goal of this project is to finalize the draft Lake Pepin Total Maximum Daily Load (TMDL) Report, issue it for public comment, address comments, and finalize the report. Lake Pepin is impaired by high levels of nutrients that cause excessive growth of algae. High levels of sediment, carried in by major river systems, also affect the lake. The sediment is filling in the lake at a much faster rate than before Minnesota was settled and intensely farmed. Nutrients and sediment are distinct yet inter-related pollutants, and are being addressed in separate TMDL reports.
This project supports monitoring and assessment activities by MPCA EAO staff and includes lab analysis, equipment, and fieldwork expenses associated with monitoring and assessment activities.
Lake Monitoring: Lakes are monitored for nutrients, clarity and other information to provide the data needed to assess the aquatic recreation use support.
This project supports monitoring and assessment activities by MPCA EAO staff and includes lab analysis, equipment, and fieldwork expenses associated with monitoring and assessment activities within the described priority watersheds. Lake Monitoring: Lakes are monitored for nutrients, clarity and other information to provide the data needed to assess the aquatic recreation use support. Biological and Water Chemistry Stream Monitoring: Monitoring to assess the conditions of streams in each watershed.
This project supports monitoring and assessment activities by MPCA EAO staff and includes lab analysis, equipment, fieldwork, data management, and interpretation expenses associated with monitoring and assessment activities.The ambient groundwater monitoring network describes the current condition and trends in Minnesota's groundwater quality.
This project supports monitoring and assessment activities by MPCA EAO staff and includes lab analysis, equipment, fieldwork, data management, and interpretation expenses associated with monitoring and assessment activities.The ambient groundwater monitoring network describes the current condition and trends in Minnesota's groundwater quality.
This project supports monitoring and assessment activities by MPCA EAO staff and includes lab analysis, equipment, and fieldwork expenses associated with monitoring and assessment activities within the described priority watersheds. Lake Monitoring: Lakes are monitored for nutrients, clarity and other information to provide the data needed to assess the aquatic recreation use support. Biological and Water Chemistry Stream Monitoring: Monitoring to assess the conditions of streams in each watershed.
The goal of this project is to analyze and document database architecture, platform, table structures, systems and data fields at six Minnesota agencies (Board of Soil and Water Resources, Department of Natural Resources, MN Department of Agriculture, MN Department of Health, Metropolitan Council, and MN Pollution Control Agency) for 30+ databases related to water.
The Greater Blue Earth River Basin Alliance (GBERBA) along with Soil and Water Conservation Districts, Counties, landowners, and drainage authorities in the ten member counties will install conservation drainage practices to improve water quality. 103E drainage systems with documented sediment or water quality issues are the focus with the goal of installing 52 practices such as improved side inlets (grade stabilization structures), alternative tile inlets, denitrifying bioreactors, saturated buffers, storage wetlands and others.
MECA will offer day sessions intended to educate permittees on the requirements for the MS4 permit. The sessions will be held in Vadnais Heights, Detroit Lakes, St. Cloud, St. Paul and Mankato Minnesota.
The goal of this project is to add dual endpoints to the turbidity section of the North Fork Crow TMDL so that it addresses the proposed TSS standards.
The State of Minnesota has adopted a ten year cycle for managing water quality for each of the 80 major watersheds in the state. Every ten years, each major watershed will undergo a surface water assessment and a Watershed Restoration and Protection Strategy (WRAPS) project. The North Fork Crow River WRAPS process is entering its second round which will focus both on addressing data gaps identified in the approved NFCRW Comprehensive Watershed Plan and on addressing additional required Total Maximum Daily Load (TMDL) studies required by the United States Environmental Protection Agency.
This project will complete a Watershed Restoration and Protection (WRAP) Plan that includes a set of pollutant reduction and watershed management strategies to achieve water quality standards for the listed pollutants, and that are understood and adoptable by local units of government and other stakeholders. This project will also provide an important water quality framework for civic and citizen engagement and communication, which will contribute to long-term public participation in surface water protection and restoration activities throughout the watershed.
Approximately 70 percent of all Minnesotans rely on groundwater as their primary source of drinking water. Wells used for drinking water must be properly sealed when removed from service to protect both public health and Minnesota’s invaluable groundwater resources. The Minnesota Department of Health protects both public health and groundwater by assuring the proper sealing of unused wells.
Clean Water funds are being provided to well owners as a 50% cost-share assistance for sealing unused public water-supply wells.
The goal of this project is the continued development of an overall strategy for reduction of turbidity/TSS, with sets of sediment reduction initiatives and actions for various sources, to address the Minnesota River Turbidity TMDL and the South Metro Mississippi River TSS TMDL. The overall strategy will be used to help establish a path towards achieving the required reductions of turbidity/TSS.
This project will complete a chloride management plan which will lay out a strategy for addressing chloride impacts to our surface waters for the 7-county metropolitan area. This chloride management plan will satisfy EPA requirements for impaired waters, address waters not yet listed, and develop a strategy to protect waters that are currently meeting the water quality standards.
This project will provide the MPCA and all local partners in the Twin Cities Metropolitan Area (TCMA) the information and tools necessary to improve and/or maintain water quality with respect to chloride for the 7-county metropolitan area during the winter maintenace period.
This project will provide the monitoring of reaches where there are data gaps, incorporate new data and analyze relevant data, identify pollutant sources, hold a stakeholder meeting, and gather information towards the future development of a Draft Restoration (TMDL) and Protection Plan.