The AgBMP Loan Program provides needed funding for local implementation of clean water practices at an extremely low cost, is unique in its structure and is not duplicated by any other source of funding.The AgBMP loan program provides 3% loans through local lenders to farmers, rural landowners, and agriculture supply businesses.
This monitoring project includes lake and stream monitoring and encompasses all of Cass County, and surrounding counties. The project will obtain water quality data for streams; in 2009, lakeshed assessments indicated that many surface waters throughout the county were data deficient. This project will address the need for sufficient data on a county-wide basis and fulfill the State’s intensive watershed monitoring program goals by obtaining water quality data at targeted lake and stream sites.
This project will provide Stressor ID work and assistance for the development of a work plan for the Major Watershed Project. The Major Watershed Project will include a plan for civic engagement and outreach, with assistance from ten Local Government Units from the Crow Wing River Watershed.
This project will develop a TMDL for all impaired lakes within the Crow Wing Watershed by furthering data collection in the watershed, analysis of data, allocation calculations, and introducing outreach and stakeholder participation activities.
This project will initiate project coordination among project partners. It will enhance civic engagement and outreach endeavors activities to support Phase 2 of TMDL project. It will also support field activities associated with stressor ID work.
This project will conduct a 2017 revision of the South Fork Crow River, North Fork Crow River and Sauk River Watershed Hydrological Simulation Program FORTRAN (HSPF) models and review of the Pine River Watershed HSPF model.
This project will collect a complete Trophic Site Index (TSI) data set for Crow Wing County lakes and a complete data set for streams and rivers for the Intensive Monitoring Program (IMP). Crow Wing County, Cass County, Wadena County, Morrison County and Hubbard County are partnering to ensure that all target lakes and rivers within the Crow Wing River watershed are monitored efficiently.
This first year of the project will collect available data relevant to the TMDL development, determine the data sets best suited for the TMDL development. Gain a better understanding of the watershed and impaired lakes, and assessment of all potential sources (internal and external) of the causes of lake impairment. EOR will also review the data produced by the MPCA for the impairment assessment for each of the lakes during year 1 of the project.
This project will support a civic engagement cohort that will be offered in southwest Minnesota to foster partnering and build capacity of local government, organizations, and residents for effective civic engagement in water protection and restoration. This project will also build networks and the skill set of local resource professionals to do effective civic engagement work for water restoration and protection. The cohort will be administered through the Minnesota River Board (MRB), established in 1995 with a goal of focusing water management efforts on the local level.
This project covers activities necessary to complete the major watershed restoration and projection project. The major objectives this project covers include contract administration, watershed coordination, stressor ID activities, identifying priority management zones, engage watershed citizens, and the creation of watershed restoration and protection plans.
This project will finalize HSPF watershed model construction by incorporating internal phosphorus loading in modeled lakes, run a suite of implementation scenarios and generate a GenScn project containing model output. The consultant will produce HSPF watershed models that can readily be used to provide information to support conventional parameter TMDLs. The consultant will deliver all modeling files for baseline and implementation scenarios and provide a GenScn project containing model output.
This project will complete a pollutant source identification and subwatershed information report and support the development of a Draft Restoration and Protection Plan (RAPP). It will also support the devlopment of a Implementation Plan that will identify target areas for BMP implementation for bacteria reductions.
This project will support the completion of a final draft Total Maximum Daily Load (TMDL) document for the Osakis, Smith and Faille Lakes TMDL and the submittal to EPA for final approval.
This project will offer incentives to protect 80 acres of land in filter strips and highly erodible lands adjacent to the rivers; construct 9 sediment and water control basins or terraces; replace 35 open tile intakes and advocate wetland restorations and grassland easement programs; organize a Friendship Tour to bring together Minnesota farmers, county commissioners, farm organizations, local, state and federal agency personnel to experience the watershed, farming practices, discuss future project ideas and strengthen relationships; and upgrade 37 subsurface sewage treatment systems by off
The Sauk River Watershed District (SRWD) is the drainage authority for Stearns and Pope Counties. The SRWD manages 12 public drainage systems totaling over 90 miles. The majority of the public systems provide drainage for agricultural land uses and were constructed in the early 1900s.
This leadership workshop series will provide the participants (citizen leaders) with knowledge, skills, processes and tools that can help to strengthen their current efforts and nurture new ones.
The Crow Wing River Watershed consists of approximately 1,959 square miles in the north to north central portion of the Upper Mississippi River Basin in Central Minnesota. The watershed encompasses all or parts of Becker, Cass, Clearwater, Crow Wing, Hubbard, Morrison, Otter Tail, Todd and Wadena Counties. The dominant land use within the watershed is forested (41%), agriculture (32%), grass, shrub and wetland make up 17%, water (7%) and urban (3%).
This project will support construction of three watershed framework models built using the Hydrologic Simulation Program FORTRAN (HSPF). These executable models will simulate hydrology at the subbasin scale. An HSPF model will be built for each of three major watersheds: the Crow River/North Fork Crow River, the South Fork Crow River, and the Sauk River.
This project will support construction of three watershed framework models built using the Hydrologic Simulation Program FORTRAN (HSPF). These executable models will simulate hydrology at the subbasin scale. An HSPF model will be built for each of these major watersheds: Crow Wing River, Redeye River, and Long Prairie River.
This project will finalize HSPF watershed model construction and complete the calibration/validation process for the following three watersheds: North Fork Crow River, South Fork Crow River, and Sauk River.
This project will continue HSPF watershed model construction beyond the initial framework development. The consultant will add representation of point source discharges to the model. The consultant will also compile flow data for the purposes of calibration and validation. Finally, an initial hydrologic calibration will be performed and submitted for approval.
Lac qui Parle-Yellow Bank Watershed District will collect water chemistry samples from the three lakes and twenty-nine stream sites in the Lac qui Parle and Minnesota Headwaters watersheds following the MPCA’s Intensive Watershed Monitoring (IWM) plan for lakes and streams. Eleven samples will be collected at each lake from May through September during 2015 and 2016. Eleven samples will be collected at each of the twenty-nine stream sites in 2015. In addition, sixteen samples at each stream site will be collected in 2015 and 2016 following the E.
The primary goal of this project is to partner with stakeholders in the development of a comprehensive Watershed Restoration and Protection Strategies (WRAPS) report to be used on the local level. Achieving this goal will require sound working relationships between local government units (LGUs), watershed citizens, and state and federal government. Gathering input from these groups will be critical when the Minnesota Pollution Control Agency (MPCA) drafts a WRAPS Report that can be utilized by local decision-makers.
The goal of this project is to establish load reduction requirements for impaired waters and to develop restoration strategies to improve water quality for impaired waters and protection strategies to maintain the quality of water for water bodies meeting standards.
This Sauk River Watershed District project will conduct the Whitney Park river clean-up, adopt a river program and other community events as part of their healthy living programs; will collaborate with the city of St. Cloud to install a rain garden demonstration site at Whitney Park; use local radio and public television stations to promote the District’s “neighborhood rain garden initiative” and other incentive programs.
The goal of this project is to extend existing Hydrologic Simulation Program FORTRAN (HSPF) models through 2017 for the following major watersheds: Redwood, Cottonwood, Watonwan, Blue Earth, Le Sueur, Pomme de Terre, Minnesota River-Headwaters, and Lac Qui Parle watersheds.
This project supports monitoring and assessment activities by MPCA EAO staff and includes lab analysis, equipment, and fieldwork expenses associated with monitoring and assessment activities.
Lake Monitoring: Lakes are monitored for nutrients, clarity and other information to provide the data needed to assess the aquatic recreation use support.
This project supports monitoring and assessment activities by MPCA EAO staff and includes lab analysis, equipment, fieldwork, data management, and interpretation expenses associated with monitoring and assessment activities.The ambient groundwater monitoring network describes the current condition and trends in Minnesota's groundwater quality.
This project supports monitoring and assessment activities by MPCA EAO staff and includes lab analysis, equipment, fieldwork, data management, and interpretation expenses associated with monitoring and assessment activities.The ambient groundwater monitoring network describes the current condition and trends in Minnesota's groundwater quality.
The goal of this project is to refine the nutrient and algae simulation in the Minnesota River basin using all relevant available sources of information. The outcome of this work order is a revised Hydrological Simulation Program – FORTRAN (HSPF) watershed model application for the Minnesota River basin that correctly represents nutrient sources and algae.
The goal of this project is to complete the construction, calibration, and validation of a Hydrological Simulation Program FORTRAN (HSPF) watershed model for the Otter Tail River watershed. The contractor will produce an HSPF model that can readily be used to provide information to support conventional parameter Total Maximum Daily Load (TMDL) Studies. The model will generate predicted output for hydrology, sediment, nutrients, and dissolved oxygen that is consistent with observed data.
This project will determine the condition of the water bodies in the Otter Tail River watershed, initiate public participation in the Watershed Restoration and Protection Strategy (WRAPS) development process, begin identification of potential stressors and priority management areas within the watershed, and begin development of initial drafts of the Total Maximum Daily Load (TMDL) study and WRAPS report.
The goals of project are to: 1) engage stakeholders and the public in watershed management activities; 2) conduct microbial source tracking to determine the source(s) of E.
This project will be the first of its kind Civic Engagement Cohort that focusses its efforts in an individual watershed. The Otter Tail River Watershed is scheduled to start a Watershed Restoration and Protection Strategy (WRAPS) in 2016 and as a component of that project, the cohort will provide the civic engagement requirement. The cohort will be comprised of 25-30 individuals located throughout the watershed who represent a broad spectrum of resource managers and citizens who are familiar with water quality and watershed management.
The goal of this project is to construct, calibrate, and validate a Hydrologic Simulation Program FORTRAN (HSPF) watershed model for the Otter Tail watershed. The contractor will produce a HSPF watershed model application(s) that can readily be used to provide information to support conventional parameter Total Maximum Daily Loads (TMDLs). The contractor will clearly demonstrate that this model generates predicted output timeseries for hydrology, sediment, nutrients, and dissolved oxygen that are consistent with available sets of observed data.
Pope County Ditch 6 (CD 6) is an 18 mile channelized watershed and a primary tributary to Ashley Creek. CD6 and Ashley Creek are impaired for bacteria, dissolved oxygen and aquatic organisms. This project will address the storm water runoff concerns identified within this public drainage system in conjunction with repairs scheduled for 2017-2018. Alternative intake structures to manage nutrients and other practices, such as water and sediment control basins, will be installed to retain water on the upland properties and minimize flow rate and velocity.
The purpose of this project is to improve understanding of primary productivity in the Red River and the diversity and population structure of the algal communities occurring along the river system. This will be accomplished through taxonomic identification of periphyton and phytoplankton assemblages necessary for characterizing responses to nutrient gradients along the Red River of the North.
This project will develop an effective transferable model to engage and educate watershed residents, stakeholders and others to better understand and protect watershed ecostystems through environmental monitoring, training, and formal and informal education programs in their local watershed. The project will build on the foundation of the existing Red River Basin River Watch program by strengthening three main activity areas: 1) curriculum integration and teacher training, 2) youth leadership and civic engagement, and 3) applied research collaboration and watershed science skills building.