The Aitkin County Soil and Water Conservation District will partner with the Minnesota Pollution Control Agency and local volunteers to conduct water quality monitoring in high priority areas of the Upper Mississippi River (Brainerd) Watershed. Four lakes will be sampled, including Sheriff, Rabbit, French, and Section Twelve. Four stream/river sites will be monitored including the Rice River (2 sites), Ripple River, and Sissabagama Creek. Through this effort we will obtain information that will be useful in assessing the health of this watershed.
This monitoring project includes lake and stream monitoring and encompasses all of Cass County, and surrounding counties. The project will obtain water quality data for streams; in 2009, lakeshed assessments indicated that many surface waters throughout the county were data deficient. This project will address the need for sufficient data on a county-wide basis and fulfill the State’s intensive watershed monitoring program goals by obtaining water quality data at targeted lake and stream sites.
This project will provide Stressor ID work and assistance for the development of a work plan for the Major Watershed Project. The Major Watershed Project will include a plan for civic engagement and outreach, with assistance from ten Local Government Units from the Crow Wing River Watershed.
This project will develop a TMDL for all impaired lakes within the Crow Wing Watershed by furthering data collection in the watershed, analysis of data, allocation calculations, and introducing outreach and stakeholder participation activities.
This project will initiate project coordination among project partners. It will enhance civic engagement and outreach endeavors activities to support Phase 2 of TMDL project. It will also support field activities associated with stressor ID work.
This project will collect a complete Trophic Site Index (TSI) data set for Crow Wing County lakes and a complete data set for streams and rivers for the Intensive Monitoring Program (IMP). Crow Wing County, Cass County, Wadena County, Morrison County and Hubbard County are partnering to ensure that all target lakes and rivers within the Crow Wing River watershed are monitored efficiently.
This first year of the project will collect available data relevant to the TMDL development, determine the data sets best suited for the TMDL development. Gain a better understanding of the watershed and impaired lakes, and assessment of all potential sources (internal and external) of the causes of lake impairment. EOR will also review the data produced by the MPCA for the impairment assessment for each of the lakes during year 1 of the project.
The project will include lake monitoring on seventeen lakes found in the Mississippi River - Brainerd watershed in East Central Crow Wing County (CWC). The project will be conducted in an effort to gain data on these data-deficient lakes. One of the goals of the CWC Local Comprehensive Water Plan (CWP) is to establish a countywide Comprehensive Monitoring Plan (CMP). Surface water assessment monitoring will enable state 303(d) and 305(b) assessments and provide a better understanding of these lakes.
This project will support a civic engagement cohort that will be offered in southwest Minnesota to foster partnering and build capacity of local government, organizations, and residents for effective civic engagement in water protection and restoration. This project will also build networks and the skill set of local resource professionals to do effective civic engagement work for water restoration and protection. The cohort will be administered through the Minnesota River Board (MRB), established in 1995 with a goal of focusing water management efforts on the local level.
This project covers activities necessary to complete the major watershed restoration and projection project. The major objectives this project covers include contract administration, watershed coordination, stressor ID activities, identifying priority management zones, engage watershed citizens, and the creation of watershed restoration and protection plans.
This project will finalize HSPF watershed model construction by incorporating internal phosphorus loading in modeled lakes, run a suite of implementation scenarios and generate a GenScn project containing model output. The consultant will produce HSPF watershed models that can readily be used to provide information to support conventional parameter TMDLs. The consultant will deliver all modeling files for baseline and implementation scenarios and provide a GenScn project containing model output.
This project will offer incentives to protect 80 acres of land in filter strips and highly erodible lands adjacent to the rivers; construct 9 sediment and water control basins or terraces; replace 35 open tile intakes and advocate wetland restorations and grassland easement programs; organize a Friendship Tour to bring together Minnesota farmers, county commissioners, farm organizations, local, state and federal agency personnel to experience the watershed, farming practices, discuss future project ideas and strengthen relationships; and upgrade 37 subsurface sewage treatment systems by off
This leadership workshop series will provide the participants (citizen leaders) with knowledge, skills, processes and tools that can help to strengthen their current efforts and nurture new ones.
The goal of this project is to construct, calibrate, and validate five Hydrologic Simulation Program FORTRAN (HSPF) watershed models. The outcome will be HSPF models that can readily be used to provide information to support conventional parameter TMDLs. These models will generate predicted output timeseries for hydrology, sediment, nutrients, and dissolved oxygen which are consistent with available sets of observed data.
The Crow Wing River Watershed consists of approximately 1,959 square miles in the north to north central portion of the Upper Mississippi River Basin in Central Minnesota. The watershed encompasses all or parts of Becker, Cass, Clearwater, Crow Wing, Hubbard, Morrison, Otter Tail, Todd and Wadena Counties. The dominant land use within the watershed is forested (41%), agriculture (32%), grass, shrub and wetland make up 17%, water (7%) and urban (3%).
The purpose of this monitoring project is to maintain water quality data collection, build on local partnerships, and develop a better of understanding of what impacts the rivers located in central Minnesota.
This project will support construction of three watershed framework models built using the Hydrologic Simulation Program FORTRAN (HSPF). These executable models will simulate hydrology at the subbasin scale. An HSPF model will be built for each of these major watersheds: Crow Wing River, Redeye River, and Long Prairie River.
The goal of this project is to construct, calibrate, and validate a watershed model using HSPF. RESPEC will produce a HSPF model that can readily be used to provide information to support conventional parameter TMDLs.
This project will continue HSPF watershed model construction beyond the initial framework development. The consultant will add representation of point source discharges to the model. The consultant will also compile flow data for the purposes of calibration and validation. Finally, an initial hydrologic calibration will be performed and submitted for approval.
Lac qui Parle-Yellow Bank Watershed District will collect water chemistry samples from the three lakes and twenty-nine stream sites in the Lac qui Parle and Minnesota Headwaters watersheds following the MPCA’s Intensive Watershed Monitoring (IWM) plan for lakes and streams. Eleven samples will be collected at each lake from May through September during 2015 and 2016. Eleven samples will be collected at each of the twenty-nine stream sites in 2015. In addition, sixteen samples at each stream site will be collected in 2015 and 2016 following the E.
The primary goal of this project is to partner with stakeholders in the development of a comprehensive Watershed Restoration and Protection Strategies (WRAPS) report to be used on the local level. Achieving this goal will require sound working relationships between local government units (LGUs), watershed citizens, and state and federal government. Gathering input from these groups will be critical when the Minnesota Pollution Control Agency (MPCA) drafts a WRAPS Report that can be utilized by local decision-makers.
The goal of this project is to establish load reduction requirements for impaired waters and to develop restoration strategies to improve water quality for impaired waters and protection strategies to maintain the quality of water for water bodies meeting standards.
The goal of this project is to extend existing Hydrologic Simulation Program FORTRAN (HSPF) models through 2017 for the following major watersheds: Redwood, Cottonwood, Watonwan, Blue Earth, Le Sueur, Pomme de Terre, Minnesota River-Headwaters, and Lac Qui Parle watersheds.
This project will update sediment Total Maximum Daily Loads (TMDLs) for 60-64 impaired stream reaches and provide a final TMDL report. The report will address sediment and turbidity impaired streams in the Minnesota River Watershed. TMDLs will describe the impairment in each water body and water quality targets, and will include a discussion of pollutant sources, supporting report components that document assumptions and methodologies, and TMDL equations with completed load allocations, wasteload allocations, and margin of safety for each impairment.
Phase 2 of the Mississippi River - Brainerd Watershed Restoration and Protection Strategy (WRAPS) project will: develop the WRAPS report and the Total Maximum Daily Load (TMDL) study, which allocates pollutant load reductions for impaired waters; implement a civic engagement plan; and develop watershed modeling scenarios to help understand implementation needs in the watershed.
The project goal is to conduct water chemistry monitoring at four subwatershed sites and one basin site in 2016, 2017, 2018 and 2019. Water chemistry monitoring will be conducted at a wide range of flow conditions with emphasis of collecting samples during periods of moderate and high flows after runoff events, as defined in the Watershed Pollutant Load Monitoring Network (WPLMN) Standard Operating Procedures and Guidance. The data collected will be submitted to the Minnesota Pollution Control Agency (MPCA) and used in the FLUX32 model for calculating pollutant loads.
This project supports monitoring and assessment activities by MPCA EAO staff and includes lab analysis, equipment, and fieldwork expenses associated with monitoring and assessment activities.
Lake Monitoring: Lakes are monitored for nutrients, clarity and other information to provide the data needed to assess the aquatic recreation use support.
This project supports monitoring and assessment activities by MPCA EAO staff and includes lab analysis, equipment, fieldwork, data management, and interpretation expenses associated with monitoring and assessment activities.The ambient groundwater monitoring network describes the current condition and trends in Minnesota's groundwater quality.
This project supports monitoring and assessment activities by MPCA EAO staff and includes lab analysis, equipment, fieldwork, data management, and interpretation expenses associated with monitoring and assessment activities.The ambient groundwater monitoring network describes the current condition and trends in Minnesota's groundwater quality.
The goal of this project is to refine the nutrient and algae simulation in the Minnesota River basin using all relevant available sources of information. The outcome of this work order is a revised Hydrological Simulation Program – FORTRAN (HSPF) watershed model application for the Minnesota River basin that correctly represents nutrient sources and algae.
The Platte River is listed by MPCA as impaired for fish bioassessments and water temperature. It is a recreational river used by many swimmers, paddlers and flotation users. The Platte is a major tributary to the Mississippi River which is the primary drinking water supply from St. Cloud to the Gulf. The Mississippi River segment immediately below Royalton is also impaired and therefore remedial efforts above are imperative.
The goal of this project is the continued development of an overall strategy for reduction of turbidity/TSS, with sets of sediment reduction initiatives and actions for various sources, to address the Minnesota River Turbidity TMDL and the South Metro Mississippi River TSS TMDL. The overall strategy will be used to help establish a path towards achieving the required reductions of turbidity/TSS.
This project will collect water quality data at eight stream sites in three of the MPCA targeted watersheds. The sites are located on Medary Creek, Flandreau Creek, Pipestone Creek (2), Split Rock Creek, Rock River, Poplar Creek and Chanarambie Creek. This project will also promote a citizens monitoring program and encourage individuals to participate in a monitoring program.
This project involves monitoring three data deficient lakes in the Crow Wing River Watershed and one stream site at the inlet to White Earth Lake. The data deficient lakes were on the MPCA Targeted watershed list. After getting the required assessment dataset for these lakes, all targeted lakes in Becker County will be completed for this assessment cycle. The stream site is a site that the White Earth Lake Association and the Becker Coalition of Lake Associations (COLA) will monitor. It is the inlet to White Earth Lake.
This project will collect water quality data for 13 Hubbard County lakes located in the Crow Wing priority watershed and identified as priority lakes by the MPCA. Upon completion the project data set will include all of the necessary information for the lakes to be assessed for impairment due to nutrients. Volunteers will collect samples from 7 of the 13 lakes and paid SWCD staff will collect samples from 6 of the lakes that do not have public access or volunteers willing to sample. The water samples will be collected 5 times/year June-September in 2010 and 2011.