The AgBMP Loan Program provides needed funding for local implementation of clean water practices at an extremely low cost, is unique in its structure and is not duplicated by any other source of funding.The AgBMP loan program provides 3% loans through local lenders to farmers, rural landowners, and agriculture supply businesses.
The primary goal of this project is to analyze of dated sediment cores to reconstruct changes in the lake condition over the last 150 years. This will be done using multiple lines of evidence including biogeochemistry, sediment accumulation, and diatom and algal remains as biological indicators.
Beltrami County will be updating their water plan in 2017. This plan will be watershed protection oriented and will utilize all available data and maps in order to best protect our water resources. In 2012, Beltrami County completed screening on 19 of our large lakes with heavy land use development. What we found was that none of the lakes had enough chemical data for a trend analysis.
The Carver County Planning and Water Management Department (PWM) has an active well sealing cost share program. Following the adoption of the updated County Groundwater Plan in February of 2016, the Carver County Board of Commissioners moved to accelerate the program to encourage landowners to seal abandoned wells. Carver County is looking to supplement existing funds, as demand is expected to increase. With this additional funding, it is the goal of Carver County PWM to seal an additional 15 wells county wide.
This project will establish a framework with County, Soil and Water Conservation District and watershed staff that will outline their involvement throughout the development of the Watershed Restoration and Protection Strategy (WRAPS) for the Cottonwood River and Redwood River watersheds.
This project will conduct a 2017 revision of the South Fork Crow River, North Fork Crow River and Sauk River Watershed Hydrological Simulation Program FORTRAN (HSPF) models and review of the Pine River Watershed HSPF model.
The Discovery Farms program is a farmer-led effort to gather information on soil and nutrient loss on farms in different settings across Minnesota. The mission of Discovery Farms Minnesota is to gather water quality information under real-world conditions.
The Drinking Water Contaminants of Emerging Concern (CEC) program identifies environmental contaminants for which current health-based standards currently do not exist or need to be updated, investigate the potential for human exposure to these chemicals, and develop guidance values for drinking water. Contaminants evaluated by CEC staff include contaminants that have been released or detected in Minnesota waters (surface water and groundwater) or that have the potential to migrate to or be detected in Minnesota waters.
This project is for constructing, calibrating, and validating a Hydrologic Simulation Program FORTRAN (HSPF) watershed models for the Minnesota portions of the Des Moines Headwaters, Lower Des Moines, and East Fork Des Moines watersheds. The model can be used to provide information to support conventional parameter Total Maximum Daily Load (TMDL) reports. This model generates predicted output timeseries data for hydrology, sediment, nutrients, and dissolved oxygen that are consistent with observed data.
This project will update sediment Total Maximum Daily Loads (TMDLs) for 60-64 impaired stream reaches and provide a final TMDL report. The report will address sediment and turbidity impaired streams in the Minnesota River Watershed. TMDLs will describe the impairment in each water body and water quality targets, and will include a discussion of pollutant sources, supporting report components that document assumptions and methodologies, and TMDL equations with completed load allocations, wasteload allocations, and margin of safety for each impairment.
This project addresses five reaches of the Minnesota River that have aquatic recreation impairments as identified by high concentrations of E. coli. The project will describe the water quality impairments, complete pollutant source assessments, establish loading capacities and allocations for the impairments, and develop implementation strategies.
This project will identify areas for potential Best Management Practice (BMP) placement and identify strategies to strengthen social capacity and effectively engage citizens in development of the upcoming Watershed Restoration and Protection Strategy (WRAPS) report.
The Greater Blue Earth River Basin Alliance (GBERBA) along with Soil and Water Conservation Districts, Counties, landowners, and drainage authorities in the ten member counties will install conservation drainage practices to improve water quality. 103E drainage systems with documented sediment or water quality issues are the focus with the goal of installing 52 practices such as improved side inlets (grade stabilization structures), alternative tile inlets, denitrifying bioreactors, saturated buffers, storage wetlands and others.
Minnesota Erosion Control Association (MECA) will offer three one-day training session intended to educate permittees on the requirements of the Municipal Separate Storm Sewer System (MS4) permit. The focus of these workshops will be on conducting inspections and various hot topics.
The goal of this project is to refine the nutrient and algae simulation in the Minnesota River basin using all relevant available sources of information. The outcome of this work order is a revised Hydrological Simulation Program – FORTRAN (HSPF) watershed model application for the Minnesota River basin that correctly represents nutrient sources and algae.
The overall goal is to develop a Watershed Restoration and Protection Strategy (WRAPS) Report and Total Maximum Daily Load (TMDL) Study that will address water quality impairments and maintain or improve water quality throughout the Pioneer Sarah Creek watershed, which is part of the North and South Fork Crow major watersheds. The study will identify sources of pollutants to the streams and lakes, allocate pollution reduction goals, and prioritize and identify implementation strategies to maintain or improve water quality in key lakes and streams in the watershed.
The goal of this project is to extend, calibrate, and validate the existing Hydrological Simulation Program – FORTRAN (HSPF) watershed models in the Red Lake River, Thief River, Clearwater River and Red Lake watersheds.
In 2017 and 2018, Redwood-Cottonwood Rivers Control Area (RCRCA) will collect water chemistry samples from the 10 lakes and 24 stream sites identified in the Redwood and Cottonwood River watersheds. Six samples will be collected at 10 lakes from May through September in 2017; five samples will be collected at 5 lakes in 2018 from May through September. Eleven samples will be collected at each of the 24 stream sites following the Basic Regime in 2017. Sixteen samples at each stream site will be collected in 2017 and 2018 following the E.coli monitoring regime.
The LeSueur River Watershed is one of the highest nutrient loading watersheds for both phosphorus and nitrogen in the State of Minnesota. The LeSueur River Watershed Restoration and Protection Strategies (WRAPS) Report was completed in August 2015 and further identifies pollutant sources and reduction goals within the LeSueur River Watershed. The WRAPS report highlights the Beauford Ditch watershed and the Madison Lake watershed area amongst the highest sources of nutrient loading to the LeSueur River.
The goal of this project is to gather and collect necessary watershed data for the development of a Watershed Restoration and Protection Strategy (WRAPS) for the Upper/Lower Red Lakes Watershed that includes impairments, their causes, and plans for restoration. Implementation of the WRAPS will maintain or improve water quality for the watershed.
This is a joint project between the United States Geological Survey (USGS), Minnesota Pollution Control Agency (MPCA), North Dakota, and Manitoba. The project is a basin-wide, up-to-date water quality trend analysis using the "QWTrend" program for approximately 40 bi-national river sites to review nutrients, total suspended solids, total dissolved solids, sulfate and chloride from 1980 - 2015.