Complete section 3 of Watershed Restoration and Protection Strategy (WRAPS) document for the Cannon and Zumbro Watersheds and provide input to sections 1 and 2.
The goal of this project is to apply the Hydrological Simulation Program FORTRAN (HSPF) model to evaluate scenarios to support potential management actions and implementation in the watershed, construct Total Maximum Daily Load (TMDL) studies, and to develop a conceptual site model of the lakes for understanding phosphorus release.
This project will guide local implementation planning efforts by identifying water quality goals, strategies, and implementation milestones in the Cedar River Watershed. This watershed includes 435 square miles in major portions of Mower, Freeborn and Dodge Counties, and incudes the regional center of Austin. A Watershed Restoration and Protection Strategy (WRAPS) report will be completed by this effort.
This project will build upon existing planning and implementation efforts already taken on in the project area. The collection of existing information will be used to complement water information in support of a more successful and sustainable water quality improvement and protection implementation program. This will be achieved by active civic engagement activities throughout Phase I of this project.
This project will complete a pollutant source identification and subwatershed information report and support the development of a Draft Restoration and Protection Plan (RAPP). It will also support the devlopment of a Implementation Plan that will identify target areas for BMP implementation for bacteria reductions.
This project will provide the MPCA, CCWD, and all other stakeholders the information and tools necessary to improve the water quality within Coon Creek Watershed District. The improvements will take place using targeted activities throughout the watershed to reduce the primary biological and chemical stressors. In turn, the reduction of these stressors will help to reduce overall loadings of sediment, turbidity, total phosphorus, and E. coli bacteria.
BWSR will administer funding to eligible County projects that provide funds and other assistance to low income property owners to upgrade or replace Noncompliant Septic Systems. BWSR will also manage annual reporting completed by each County.
Varney Lake is owned and maintained by the City of white Bear Lake as part of its stormwater collection system. The City will excavate approximately 10,000 cubic yards of polycyclic aromatic hydrocarbons (PAH) contaminated sediment from Varney Lake (which is located in a residential portion of the City) and manage the sediments on site by encapsulating the sediment in a berm covered with clean top soil. The encapsulated sediment will be managed as a solid waste in what the MPCA refers to as a limited use solid waste landfill (Facility).
The purpose of this project is to develop a framework to implement best management practices (BMPs) on ditches in headwater areas utilizing a partnership between drainage staff and the Greater Blue Earth River Basin Alliance (GBERBA). By replacing failing side-inlets with an alternative design, we can make strides towards our water quality and water quantity goals. The alternative inlets serve to prevent sediment and phosphorus from washing downstream and the design can also alleviate peak flows by temporarily storing stormwater.
Project between Minnesota Department of Natural Resources and United States Army Corp of Engineers at Knowlton Creek Watershed to address a large amount of sediment deposited into the St. Louis River Area of Concern (AOC).
Improved levels of civic engagement and community participation in support for the Watershed Restoration and Protection Strategy (WRAPS) processes in the St. Louis River, Lake Superior South, and Cloquet River Watersheds. Monitoring plans and compiled field data will be provided and summarized that will aid in the future completion of Total Maximum Daily Load Reports (TMDLs) in these watersheds and in the Lake Superior North Watershed.
This project will repair and upgrade the water control structure and provide water quality enhancement measures on Oasis Pond in Roseville, Minnesota. This project will also protect the quality of downstream receiving waters; specifically Lake Johanna, by reducing phosphorus pollutant loads.
The purpose of this project is for Lake County Soil and Water Conservation District to continue to assist with the Minnesota Pollution Control Agency’s watershed approach and Watershed Restoration and Protection Strategy (WRAPS) process in the Rainy River Headwaters and Cloquet River watersheds. As part of this, Lake County Soil and Water Conservation District will lead efforts to increase levels of civic engagement and community participation in support of the current WRAPS process.
This project will provide a protocol for prioritizing sites in the St. Louis Area of Concern (AOC ) for restoration based on site-specific bioavailability considerations. Despite large data collection efforts focused on sediment chemistry, the extent to which sediment with moderate levels of contamination is available for uptake into biota and therefore contributing to Beneficial Use Impairments (BUI)s is still largely unknown.
The St. Louis River Area of Concern (SLRAOC) conservation partners are focused on removing Beneficial Use Impairments (BUI) in the estuary and eventually delisting the SLRAOC. Cooperative efforts between multiple resource agencies and regional stakeholders have identified a host of restoration objectives, developed project support activities, and partially secured funding that includes a state commitment through the Minnesota Clean Water Fund.
The St. Louis River Area of Concern (SLRAOC) conservation partners are focused on removing Beneficial Use Impairments (BUI) in the estuary and eventually delisting the SLRAOC. Cooperative efforts between multiple resource agencies and regional stakeholders have identified a host of restoration objectives, developed project support activities, and partially secured funding that includes a state commitment through the Minnesota Clean Water Fund.
The St. Louis River watershed is one of the largest watersheds in northern Minnesota and the largest single contributing watershed to Lake Superior. Surface waters are abundant with 353 lakes and 97 streams segments. Large areas of forest and wetlands help to sustain areas of exceptional water quality. However, land use changes have degraded many lakes, rivers, and streams. 21 stream reaches have aquatic life impairments, as identified by high turbidity (1 reach), poor quality aquatic macro-invertebrate community (16 reaches), and/or poor quality fish community (12 reaches).
This project will provide technical, planning and engineering assistance to the MPCA for the development and implementation of the St. Louis River Remedial Action Plan (RAP). USACE and USEPA in partnership with the MPCA will administer work plans to complete a sediment assessment for Minnesota areas within Superior Bay, St. Louis Bay, Lower St. Louis River and the Upper St. Louis River, encompassing approximately 5,349 acres of the St. Louis River and Estuary.
The project will plan, implement, and report on a community engagement strategy for identifying community/landowner opportunities, obstacles, and opinions on land management and water quality that will result in the identification of Watershed Restoration and Protection Strategies (WRAPS) input for the Sibley, Nicollet, Renville, McLeod, Rice, and Le Sueur County areas of the Lower Minnesota River watershed.
The goal of this project is to better target restoration activities in the Cannon River watershed via a paleolimnological study of a selected set of the lakes addressed in the Total Maximum Daily Load (TMDL) for the watershed. The goals are to better constrain lake phosphorus budgets, and determine the magnitude of ecological change experienced by a range of lake types.
The goal of the project is to create a complete Watershed Restoration and Protection Strategy (WRAPS) report for the Ramsey-Washington Metro Watershed District for inclusion into an updated Watershed Management Plan, including completion of a watershed-wide Total Maximum Daily Load (TMDL) report sufficient for EPA approval.
The goal of this project is the continued development of an overall strategy for reduction of turbidity/TSS, with sets of sediment reduction initiatives and actions for various sources, to address the Minnesota River Turbidity TMDL and the South Metro Mississippi River TSS TMDL. The overall strategy will be used to help establish a path towards achieving the required reductions of turbidity/TSS.
Assesss current data sources and preliminary information about the conditions in the watershed and present the information through bibliographies, abstracts and memos.
The goal of this project is to test the sensitivity of the Zumbro River Watershed Hydrological Simulation Program FORTRAN (HSPF) model management scenario results. Additional goals are to develop Total Maximum Daily Loads (TMDLs) for impaired stream reaches and Rice Lake, which will be documented in a TMDL Report. The consultant will apply the existing calibrated and validated Zumbro River Watershed HSPF model to construct load duration curves to develop TMDLs.