The AgBMP Loan Program provides needed funding for local implementation of clean water practices at an extremely low cost, is unique in its structure and is not duplicated by any other source of funding.The AgBMP loan program provides 3% loans through local lenders to farmers, rural landowners, and agriculture supply businesses.
This project will conduct a 2017 revision of the South Fork Crow River, North Fork Crow River and Sauk River Watershed Hydrological Simulation Program FORTRAN (HSPF) models and review of the Pine River Watershed HSPF model.
This project focuses on preventing and reducing sediment related turbidity problems throughout the Crow River Watershed and contains three main tasks; Best Management Practices (BMP's) installation, public outreach and administration.
The project goal is to conduct water chemistry monitoring at five subwatershed sites and two basin sites annually from 2016-2019, based on flow conditions, targeting runoff events using protocols defined in the Watershed Pollutant Load Monitoring Network (WPLMN) Standard Operating Procedures and Guidance. The data collected will be submitted to Minnesota Pollution Control Agency (MPCA) and used in the FLUX32 model for calculating pollutant loads.
This project will support a civic engagement cohort that will be offered in southwest Minnesota to foster partnering and build capacity of local government, organizations, and residents for effective civic engagement in water protection and restoration. This project will also build networks and the skill set of local resource professionals to do effective civic engagement work for water restoration and protection. The cohort will be administered through the Minnesota River Board (MRB), established in 1995 with a goal of focusing water management efforts on the local level.
This project will finalize HSPF watershed model construction by incorporating internal phosphorus loading in modeled lakes, run a suite of implementation scenarios and generate a GenScn project containing model output. The consultant will produce HSPF watershed models that can readily be used to provide information to support conventional parameter TMDLs. The consultant will deliver all modeling files for baseline and implementation scenarios and provide a GenScn project containing model output.
This project includes project planning, coordination, stream reconnaissance, and begins the effort towards civic engagement/outreach components of the South Fork Crow River Watershed project. Phase I will focus towards the development of project teams, identifying stakeholders, developing an initial civic engagement strategic plan and conducting limited lake and stream monitoring.
This project will complete a pollutant source identification and subwatershed information report and support the development of a Draft Restoration and Protection Plan (RAPP). It will also support the devlopment of a Implementation Plan that will identify target areas for BMP implementation for bacteria reductions.
This project will complete spatial and temporal revisions , recalibration and validation of 7 watershed HSPF models. These fully functioning calibrated validated executable models will simulate hydrology, sediment (sand, silt, and clay), temperature, phosphorus, nitrogen, dissolved oxygen, biochemical oxygen demand, and algae at the 12-digit HUC subbasin scale (or finer).
The goal of this project is to construct, calibrate, and validate a Hydrological Simulation Program FORTRAN (HSPF) model for Minnesota portions of the Des Moines River watershed.
This project will develop a watershed wide Total Maximum Daily Load (TMDL) study and River Eutrophication Standard (RES) TMDL report for water quality impairments in the Des Moines River basin, which includes the Des Moines River Headwaters, Lower Des Moines River, and East Fork Des Moines River watersheds.
The Discovery Farms program is a farmer-led effort to gather information on soil and nutrient loss on farms in different settings across Minnesota. The mission of Discovery Farms Minnesota is to gather water quality information under real-world conditions.
This project will support construction of three watershed framework models built using the Hydrologic Simulation Program FORTRAN (HSPF). These executable models will simulate hydrology at the subbasin scale. An HSPF model will be built for each of three major watersheds: the Crow River/North Fork Crow River, the South Fork Crow River, and the Sauk River.
This project will finalize HSPF watershed model construction and complete the calibration/validation process for the following three watersheds: North Fork Crow River, South Fork Crow River, and Sauk River.
The goal of this project is to extend the existing HSPF models through 2012 in the Chippewa Watershed (07020005) and Hawk-Yellow Medicine Watershed (07020004) to incorporate recent monitoring data to support current MPCA business needs and sediment source investigations.
This project will complete spatial and temporal revisions of 6 Hydrologic Simulation Program FORTRAN (HSPF) models, the recalibration and validation of 7 watershed HSPF models, and the revision of the drainage network and point source representation of the Pomme de Terre HSPF model.
This project is for constructing, calibrating, and validating a Hydrologic Simulation Program FORTRAN (HSPF) watershed models for the Minnesota portions of the Des Moines Headwaters, Lower Des Moines, and East Fork Des Moines watersheds. The model can be used to provide information to support conventional parameter Total Maximum Daily Load (TMDL) reports. This model generates predicted output timeseries data for hydrology, sediment, nutrients, and dissolved oxygen that are consistent with observed data.
The Minnesota River Basin Hydrological Simulation Program FORTRAN (HSPF) models simulate sediment erosion and transport, however these models periodically need to be adjusted to be consistent with the most recent sources of information regarding sediment distribution and loading rates. The goal of this project is to refine the sediment source partitioning and simulation in the Minnesota River basin using all relevant available sources of information.
The Minnesota River Basin Hydrological Simulation Program FORTRAN (HSPF) models, which simulate flow and pollutant transport, need to be refined to be consistent with the most recent external sources of land use, hydrologic response, and surface flow attributions. The primary goal of this work is to refine the hydrologic calibration in the Minnesota River basin.
The goal of this project is to finalize the Lake Pepin Watershed phosphorus total maximum daily load (TMDL) report by using the existing information and documentation prepared under previous contracts to prepare one TMDL report that addresses the impairments on the mainstem of the Mississippi River. Information developed to date for draft TMDLs on the Minnesota River mainstem will be documented for later use by the Minnesota Pollution Control Agency.
A Level III Feedlot Inventory in the West Fork Des Moines River Watershed identified the need for a new manure storage basin. The Heron Lake Watershed District will be partnering with Murray County, Murray Soil and Water Conservation District, and Southwest Prairie Technical Service Area to construct the basin to ensure that manure and milk house wastewater will be properly stored. In addition, the project will decrease the size and usage of open lots using buffer strip and pasture to significantly reduce nutrient loading.
The goal of this project is to extend existing Hydrologic Simulation Program FORTRAN (HSPF) models through 2017 for the following major watersheds: Redwood, Cottonwood, Watonwan, Blue Earth, Le Sueur, Pomme de Terre, Minnesota River-Headwaters, and Lac Qui Parle watersheds.
This project addresses five reaches of the Minnesota River that have aquatic recreation impairments as identified by high concentrations of E. coli. The project will describe the water quality impairments, complete pollutant source assessments, establish loading capacities and allocations for the impairments, and develop implementation strategies.
This project addresses five reaches of the Minnesota River that have aquatic recreation impairments as identified by high concentrations of E. coli. The project will describe the water quality impairments, complete pollutant source assessments, establish loading capacities and allocations for the impairments, and develop implementation strategies.
This project supports monitoring and assessment activities by MPCA EAO staff and includes lab analysis, equipment, and fieldwork expenses associated with monitoring and assessment activities within the described priority watersheds.
Lake Monitoring: Lakes are monitored for nutrients, clarity and other information to provide the data needed to assess the aquatic recreation use support.
The West Fork Des Moines Headwaters Water Sampling Project consists of collecting water samples and along with field data from three sampling sites within the West Fork Des Moines River Headwaters located in Murray County, MN. The sampling will take place from May 2014 through September 2014, and then again from June 2015 through August 2015. During this sampling regime, the three stream sites will be sampled sixteen times. Field replicates as well as blanks will be collected also. The three sites identified for sampling are the West Fork Des Moines RIver, Beaver Creek, and Lime Creek.
The goal of this project is to refine the nutrient and algae simulation in the Minnesota River basin using all relevant available sources of information. The outcome of this work order is a revised Hydrological Simulation Program – FORTRAN (HSPF) watershed model application for the Minnesota River basin that correctly represents nutrient sources and algae.
This project will complete a Watershed Restoration and Protection (WRAP) Plan that includes a set of pollutant reduction and watershed management strategies to achieve water quality standards for the listed pollutants, and that are understood and adoptable by local units of government and other stakeholders. This project will also provide an important water quality framework for civic and citizen engagement and communication, which will contribute to long-term public participation in surface water protection and restoration activities throughout the watershed.
Approximately 70 percent of all Minnesotans rely on groundwater as their primary source of drinking water. Wells used for drinking water must be properly sealed when removed from service to protect both public health and Minnesota’s invaluable groundwater resources. The Minnesota Department of Health protects both public health and groundwater by assuring the proper sealing of unused wells.
Clean Water funds are being provided to well owners as a 50% cost-share assistance for sealing unused public water-supply wells.
The goal of this project is the continued development of an overall strategy for reduction of turbidity/TSS, with sets of sediment reduction initiatives and actions for various sources, to address the Minnesota River Turbidity TMDL and the South Metro Mississippi River TSS TMDL. The overall strategy will be used to help establish a path towards achieving the required reductions of turbidity/TSS.
This project will support the review of all public comments submitted for the Buffalo Creek TMDL and make appropriate edits and changes to the draft TMDL based on MPCA guidance.
Phase I built the foundation for the South Fork Crow River Watershed Restoration and Protection Strategy (WRAPS) and created a civic engagement plan. Civic engagement strategies were identified to create greater communication and watershed activities. Phase II provided the analytical and strategic foundation essential to prescribing protection and restoration strategies. These strategies focus on both protecting current fully supporting and restoring impaired surface water resources to water quality standards in the South Fork watershed.
This project will develop Total Maximum Daily Load (TMDL) allocations and complete a final draft TMDL report for the five lake impairments listed for the South Fork Crow River Watershed.
This project will enhance volunteer monitoring efforts and improve the methods used by area Lake Associations in sample collection, handling and data management. It will also assist these organizations in developing simple, straightforward lake management plans that will carry their efforts well beyond the scope of this project.
This project will collect additional water quality and flow data on tributaries on the South Fork Crow River and Buffalo Creek. Further assessment of these reaches will provide a better understanding of what impacts these tributaries have on the impaired South Fork Crow River and Buffalo Creek.
The Southwest Prairie Technical Service Area 5 (SWPTSA), located in the southwest corner of Minnesota, encompasses 11 Soil and Water Conservation Districts (SWCDs): Cottonwood, Jackson, Lac Qui Parle, Lincoln, Lyon, Murray, Nobles, Pipestone, Redwood, Rock, and Yellow Medicine. This project will protect natural resources within the three major river basins of Minnesota, Missouri and Des Moines Rivers. The SWPTSA will assist member SWCDs in locating and identifying priority subwatersheds that have soil erosion and water quality issues using terrain analysis.
This project will provide the monitoring of reaches where there are data gaps, incorporate new data and analyze relevant data, identify pollutant sources, hold a stakeholder meeting, and gather information towards the future development of a Draft Restoration (TMDL) and Protection Plan.
This project will support the monitoring of reaches where there are data gaps, incorporate new data and relevant data, continue identification of pollutant sources, complete load duration curves, coordinate and encourage participation in stakeholder meetings. The information gathered during Phase IIB will be utilized towards the development of a Draft Restoration (TMDL) and Protection Plan (Plan).
This project will extend, calibrate, and validate watershed models using the Hydrological Simulation Program - FORTRAN (HSPF) watershed model for the Mississippi Headwaters, Leech Lake, Pine, and South Fork Crow Watersheds.