The AgBMP Loan Program provides needed funding for local implementation of clean water practices at an extremely low cost, is unique in its structure and is not duplicated by any other source of funding.The AgBMP loan program provides 3% loans through local lenders to farmers, rural landowners, and agriculture supply businesses.
This project will support a civic engagement cohort that will be offered in southwest Minnesota to foster partnering and build capacity of local government, organizations, and residents for effective civic engagement in water protection and restoration. This project will also build networks and the skill set of local resource professionals to do effective civic engagement work for water restoration and protection. The cohort will be administered through the Minnesota River Board (MRB), established in 1995 with a goal of focusing water management efforts on the local level.
This project will consist of identifying the candidate causes of biological stress and to develop and implement a public and stakeholder participation process that encourages local ownership of water quality problems and solutions. The Stressor ID process will be done using existing data, identifying data gaps, gathering new data, developing load duration curves, and refinement of the candidate causes. The civic engagement work will include compiling and reviewing existing data on community capacity and assessing that information.
This project will build network and the skill set of local resource professionals to do effective civic engagement work for water restoration and protection in Southeast Minnesota. The cohort will be administered through the Southeast Minnesota Water Resources Board (SE MN WRB) which is an area wide Joint Powers Board (JPB) established to help improve and protect the water resources of the area through coordinating local water planning efforts. This JPB has successfully administered water quality grants in the past that have positively impacted the water resources of this region.
This project will complete spatial and temporal revisions , recalibration and validation of 7 watershed HSPF models. These fully functioning calibrated validated executable models will simulate hydrology, sediment (sand, silt, and clay), temperature, phosphorus, nitrogen, dissolved oxygen, biochemical oxygen demand, and algae at the 12-digit HUC subbasin scale (or finer).
The Discovery Farms program is a farmer-led effort to gather information on soil and nutrient loss on farms in different settings across Minnesota. The mission of Discovery Farms Minnesota is to gather water quality information under real-world conditions.
This monitoring effort will focus on collecting chemistry and field data information from six sample locations on Hay Creek, Wells Creek, Bullard Creek and Gilbert Creek in Goodhue County and Miller Creek in Wabasha County within the Mississippi River-Lake Pepin Watershed (MRLP). These streams are typically cold water streams which outlet directly to the Mississippi River or Lake Pepin. This monitoring effort is to assist with the 10-year watershed-monitoring schedule that the Minnesota Pollution Control Agency has placed on major watersheds across the State.
The goal of this project is to extend the existing HSPF models through 2012 in the Chippewa Watershed (07020005) and Hawk-Yellow Medicine Watershed (07020004) to incorporate recent monitoring data to support current MPCA business needs and sediment source investigations.
This project will complete spatial and temporal revisions of 6 Hydrologic Simulation Program FORTRAN (HSPF) models, the recalibration and validation of 7 watershed HSPF models, and the revision of the drainage network and point source representation of the Pomme de Terre HSPF model.
The Minnesota River Basin Hydrological Simulation Program FORTRAN (HSPF) models simulate sediment erosion and transport, however these models periodically need to be adjusted to be consistent with the most recent sources of information regarding sediment distribution and loading rates. The goal of this project is to refine the sediment source partitioning and simulation in the Minnesota River basin using all relevant available sources of information.
The Minnesota River Basin Hydrological Simulation Program FORTRAN (HSPF) models, which simulate flow and pollutant transport, need to be refined to be consistent with the most recent external sources of land use, hydrologic response, and surface flow attributions. The primary goal of this work is to refine the hydrologic calibration in the Minnesota River basin.
The consultant LimnoTech will support response to Total Maximum Daily Load (TMDL) comments the peer review process, United States Environmental Protection Agency and public notice. They will then revise the TMDL document as needed and attend internal and external project meetings.
The goal of this project is to prepare a draft Lake Pepin Total Maximum Daily Load (TMDL) Report. Lake Pepin is impaired by high levels of nutrients that cause excessive growth of algae.
The goal of this project is to finalize the Lake Pepin Watershed phosphorus total maximum daily load (TMDL) report by using the existing information and documentation prepared under previous contracts to prepare one TMDL report that addresses the impairments on the mainstem of the Mississippi River. Information developed to date for draft TMDLs on the Minnesota River mainstem will be documented for later use by the Minnesota Pollution Control Agency.
The Cannon River Watershed includes approximately 941,000 acres of primarily agricultural landscape. Because of its large size, four subwatershed lobes are often referenced: Straight River Watershed, Upper Cannon River Watershed, Middle Cannon River Watershed, and the Lower Cannon River Watershed. Rice County is proposing utilizing LiDAR topographic data to determine areas of highest importance for Best Management Practice (BMP) Implementation for sediment within the Middle and Lower Cannon subwatersheds.
The goal of this project is to extend existing Hydrologic Simulation Program FORTRAN (HSPF) models through 2017 for the following major watersheds: Redwood, Cottonwood, Watonwan, Blue Earth, Le Sueur, Pomme de Terre, Minnesota River-Headwaters, and Lac Qui Parle watersheds.
This project addresses five reaches of the Minnesota River that have aquatic recreation impairments as identified by high concentrations of E. coli. The project will describe the water quality impairments, complete pollutant source assessments, establish loading capacities and allocations for the impairments, and develop implementation strategies.
The goal of this project is to complete the construction, calibration, and validation of a Hydrological Simulation Program – FORTRAN (HSPF) watershed model for a portion of the Mississippi River-Lake Pepin watershed.
This project supports monitoring and assessment activities by MPCA EAO staff and includes lab analysis, equipment, and fieldwork expenses associated with monitoring and assessment activities within the described priority watersheds.
Lake Monitoring: Lakes are monitored for nutrients, clarity and other information to provide the data needed to assess the aquatic recreation use support.
This project supports monitoring and assessment activities by MPCA EAO staff and includes lab analysis, equipment, fieldwork, data management, and interpretation expenses associated with monitoring and assessment activities.The ambient groundwater monitoring network describes the current condition and trends in Minnesota's groundwater quality.
This project supports monitoring and assessment activities by MPCA EAO staff and includes lab analysis, equipment, fieldwork, data management, and interpretation expenses associated with monitoring and assessment activities.The ambient groundwater monitoring network describes the current condition and trends in Minnesota's groundwater quality.
The goal of this project is to refine the nutrient and algae simulation in the Minnesota River basin using all relevant available sources of information. The outcome of this work order is a revised Hydrological Simulation Program – FORTRAN (HSPF) watershed model application for the Minnesota River basin that correctly represents nutrient sources and algae.
This grant application will focus on the construction of multiple targeted best management practices (BMPs) in priority areas which will provide measurable reductions in sediment and phosphorus loadings to cold water streams in the Mississippi River/Lake Pepin Watershed. The installation of these BMPs will also protect the existing stream habitat by reducing peak flows and reduced streambank erosion.
Approximately 70 percent of all Minnesotans rely on groundwater as their primary source of drinking water. Wells used for drinking water must be properly sealed when removed from service to protect both public health and Minnesota’s invaluable groundwater resources. The Minnesota Department of Health protects both public health and groundwater by assuring the proper sealing of unused wells.
Clean Water funds are being provided to well owners as a 50% cost-share assistance for sealing unused public water-supply wells.
The goal of this project is the continued development of an overall strategy for reduction of turbidity/TSS, with sets of sediment reduction initiatives and actions for various sources, to address the Minnesota River Turbidity TMDL and the South Metro Mississippi River TSS TMDL. The overall strategy will be used to help establish a path towards achieving the required reductions of turbidity/TSS.
The purpose of this effort is to create an educational video that will “bring to life” geo-scientific information related to groundwater movement in southeast Minnesota. This video will be used by the Minnesota Pollution Control Agency (MPCA), Minnesota Department of Agriculture (MDA) and other regional partners to help explain the local geology and related groundwater movement. It is anticipated that the video will be used at meetings and other events related to water resource management and natural resource issues. In addition, three stand alone high resolution graphics will be created.