This project will support the monitoring of two sites on the Cannon River throughout the field seasons of 2013 and 2014 during storm events and baseflow conditions to capture 25 samples per year at each site according to the WPLMN objectives. The information gathered from these samples and site visits will be compiled for reporting purposes and for use in calculating pollutant loading using the FLUX32 model.
This project will work with the MPCA to conduct watershed pollutant load monitoring at four sites in the Chippewa River watershed and one site in the neighboring Pomme de Terre River watershed . The Chippewa River Watershed Project (CRWP) team will also aid the MPCA in measuring and comparing regional differences and long-term trends in water quality. The goal is to collect quality data and complete load calculations for the five sites using the MPCA's established protocols.
The Pope County Water Plan has identified surface water quality and erosion control as top priority resource concerns. These two priorities account for 33% of the phosphorus loading to Lake Emily. The Lake Emily Watershed Best Management Practices (BMP) Prioritization Project will provide GIS-based water quality analysis to assist the Pope Soil and Water Conservation District in determining effective locations for BMP implementation and will prioritize the areas from high to low for phosphorus, nitrogen, and sediment delivery from contributing runoff during rainfall events.
Pope Soil and Water Conservation District, partnered with Natural Resources Conservation Service staff and landowners, will install 22 targeted water and sediment control structures in two priority subwatersheds (Trappers Run and Minnewaska). These structures have the potential to reduce sediment load by 514 tons per year, and phosphorus by 440 pounds per year.
The City of Glenwood Water Quality Assessment & Best Management Practice Prioritization Project will include an assessment and analysis of approximately 1,796 acres affecting water quality and contributing runoff to Lake Minnewaska. By implementing this water quality analysis and assessment of the City of Glenwood and sub watersheds, a reducing pollutants by 1,287 pounds per year of phosphorus and 203 tons per year of sediment.
The Lake Emily Watershed BMP Targeted Implementation Project will provide funding for 48 water and sediment control projects and potential shoreline and riparian restoration. This work would address surface water quality sources identified in the water plan (Section 2-pg 11) including direct drainage from the Lake Emily sub-watersheds (070200050304, 070200050303, 070200050203, 070200050201, 070200050202) the Little Chippewa, and from upstream discharge between Lake Emily and Lake Minnewaska.
Pope SWCD has 9 motivated landowners with 21 WASCOBs, 1 lined waterway, and 1 shoreline restoration in two priority sub watersheds (Trappers Run and Minnewaska). Based on averages calculated from recently constructed WASCOBs in the West Central Area II these projects have the potential to reduce TSS by 518 T/year, and 446 lbs./year of TP. This project will provide a secondary benefit to improve downstream water quality to Lake Emily. The project will result in meeting 99% of the Lake Emily TP lbs/yr.
Lake Emily is a high priority recreational lake in Pope County and is currently not meeting state water quality standards due to high phosphorus levels. This project will provide funding for 26 water and sediment control projects with potential shoreline and riparian restoration projects. This work will address surface water quality sources including both direct drainage and upstream discharge. Collectively, these projects have the potential to annually reduce sediment and phosphorus leaving the field which will directly address 15% of Lake Emily's phosphorus reduction goal.
The AgBMP Loan Program provides needed funding for local implementation of clean water practices at an extremely low cost, is unique in its structure and is not duplicated by any other source of funding.The AgBMP loan program provides 3% loans through local lenders to farmers, rural landowners, and agriculture supply businesses.
The goal of this project is to use a science-based and participatory approach to understanding and promoting conservation practices in the agricultural community.
There are two main goals of this Cedar Basin HSPF project,
A. Overall development of the HSPF model in the Cedar Basin of Minnesota; and
B. Shell Rock River nutrient, DO , impairment modeling and TMDL completion.
The purpose of this project is to create a shared plan for the Watershed Restoration and Protection Strategy (WRAPS) process with roles, responsibilities, commitments and deliverables clearly understood by all (MPCA, CRWP and local partners). The Minnesota Pollution Control Agency (MPCA) and the Chippewa River Watershed Project (CRWP) will be working together to ascertain the level of involvement that local units of government and other partners (local partners) want to engage in for the second round of the WRAPS process.
The purpose of this project is to create a shared plan for the Watershed Restoration and Protection Strategy (WRAPS) process with roles, responsibilities, commitments and deliverables clearly understood by all (Minnesota Pollution Control Agency (MPCA), Chippewa River Watershed, and local partners). The MPCA and the Chippewa River Watershed Project (CRWP) will be working together to ascertain the level of involvement that local units of government and other partners want to engage in for the second round of the WRAPS process.
This project will complete a comprehensive and sustainable Major Watershed Restoration and Protection Strategies report for the Chippewa River, its tributary streams, and the many lakes in the Chippewa River watershed that is understandable and adoptable by local units of government and residents.
The goal of the Chippewa River Watershed Protection project is to protect unimpaired areas of the watershed. This will be accomplished through education and outreach with landowners and through implementation of best management practices.
This project will support a civic engagement cohort that will be offered in southwest Minnesota to foster partnering and build capacity of local government, organizations, and residents for effective civic engagement in water protection and restoration. This project will also build networks and the skill set of local resource professionals to do effective civic engagement work for water restoration and protection. The cohort will be administered through the Minnesota River Board (MRB), established in 1995 with a goal of focusing water management efforts on the local level.
This project will develop and execute three point source related scenarios for the Chippewa River watershed using an existing HSPF watershed model. This project will also support the review of the HSPF Modeling Guidance Document.
This project will build network and the skill set of local resource professionals to do effective civic engagement work for water restoration and protection in Southeast Minnesota. The cohort will be administered through the Southeast Minnesota Water Resources Board (SE MN WRB) which is an area wide Joint Powers Board (JPB) established to help improve and protect the water resources of the area through coordinating local water planning efforts. This JPB has successfully administered water quality grants in the past that have positively impacted the water resources of this region.
The goal of this project is to extend the existing HSPF models through 2012 in the Chippewa Watershed (07020005) and Hawk-Yellow Medicine Watershed (07020004) to incorporate recent monitoring data to support current MPCA business needs and sediment source investigations.
The Minnesota River Basin Hydrological Simulation Program FORTRAN (HSPF) models simulate sediment erosion and transport, however these models periodically need to be adjusted to be consistent with the most recent sources of information regarding sediment distribution and loading rates. The goal of this project is to refine the sediment source partitioning and simulation in the Minnesota River basin using all relevant available sources of information.
The Minnesota River Basin Hydrological Simulation Program FORTRAN (HSPF) models, which simulate flow and pollutant transport, need to be refined to be consistent with the most recent external sources of land use, hydrologic response, and surface flow attributions. The primary goal of this work is to refine the hydrologic calibration in the Minnesota River basin.
The MPCA has selected the Soil and Water Assessment Tool (SWAT) watershed model to simulate watershed hydrology and water quality to assess various restoration scenarios in the Little Cannon River watershed. The SWAT model is an important tool in developing an understanding of existing conditions and simulating conditions under various management scenarios to inform the development of implementation strategies and plans to restore and protect streams and lakes.
The goal of this project is to extend existing Hydrologic Simulation Program FORTRAN (HSPF) models through 2017 for the following major watersheds: Redwood, Cottonwood, Watonwan, Blue Earth, Le Sueur, Pomme de Terre, Minnesota River-Headwaters, and Lac Qui Parle watersheds.
This project addresses five reaches of the Minnesota River that have aquatic recreation impairments as identified by high concentrations of E. coli. The project will describe the water quality impairments, complete pollutant source assessments, establish loading capacities and allocations for the impairments, and develop implementation strategies.
This project addresses five reaches of the Minnesota River that have aquatic recreation impairments as identified by high concentrations of E. coli. The project will describe the water quality impairments, complete pollutant source assessments, establish loading capacities and allocations for the impairments, and develop implementation strategies.
This project supports monitoring and assessment activities by MPCA EAO staff and includes lab analysis, equipment, and fieldwork expenses associated with monitoring and assessment activities.
Lake Monitoring: Lakes are monitored for nutrients, clarity and other information to provide the data needed to assess the aquatic recreation use support.
This project supports monitoring and assessment activities by MPCA EAO staff and includes lab analysis, equipment, and fieldwork expenses associated with monitoring and assessment activities within the described priority watersheds.
Lake Monitoring: Lakes are monitored for nutrients, clarity and other information to provide the data needed to assess the aquatic recreation use support.
The Greater Blue Earth River Basin Alliance (GBERBA) along with Soil and Water Conservation Districts, Counties, landowners, and drainage authorities in the ten member counties will install conservation drainage practices to improve water quality. 103E drainage systems with documented sediment or water quality issues are the focus with the goal of installing 52 practices such as improved side inlets (grade stabilization structures), alternative tile inlets, denitrifying bioreactors, saturated buffers, storage wetlands and others.
The goal of this project is to refine the nutrient and algae simulation in the Minnesota River basin using all relevant available sources of information. The outcome of this work order is a revised Hydrological Simulation Program – FORTRAN (HSPF) watershed model application for the Minnesota River basin that correctly represents nutrient sources and algae.
This project will work to install 30 water and sediment control basins (WaSCOBs) in three subwatersheds adjacent to Lake Minnewaska to reduce the amount of total phosphorus (TP) entering Pelican Lake, Lake Minnewaska, and Lake Emily. Pelican Lake and Lake Emily have been identified in an 8 lake Total Maximum Daily Load (TMDL) study conducted in Pope County as being impaired for excess nutrients.
This project will develop feasibility analysis, a drawdown plan for Malmedal Lake and an analysis of available options for fish barriers in the watersheds of Malmedal Lake and Strandness Lake.
The Pope Soil and Water Conservation District Chippewa River Watershed Surface Water Assessment Grant (SWAG) monitoring program will provide knowledge of water quality to local partners and the Minnesota Pollution Control Agency. Five sites, comprised of two lakes and three along two streams, will be monitored over the course of two years. There are 5 townships throughout the Chippewa watershed that each house a monitoring site: Nora, New Prairie , White Bear Lake, Barsness, and Gilchrist.
Approximately 70 percent of all Minnesotans rely on groundwater as their primary source of drinking water. Wells used for drinking water must be properly sealed when removed from service to protect both public health and Minnesota’s invaluable groundwater resources. The Minnesota Department of Health protects both public health and groundwater by assuring the proper sealing of unused wells.
Clean Water funds are being provided to well owners as a 50% cost-share assistance for sealing unused public water-supply wells.
The goal of this project is the continued development of an overall strategy for reduction of turbidity/TSS, with sets of sediment reduction initiatives and actions for various sources, to address the Minnesota River Turbidity TMDL and the South Metro Mississippi River TSS TMDL. The overall strategy will be used to help establish a path towards achieving the required reductions of turbidity/TSS.
This project is for surface water assessment in the Shell Rock and Winnebago River Watershed including four stream sites and two lake sites. Waters of concern include Lime creek, Bancroft creek, Goose creek, a tributary to Fountain Lake, Albert Lea Lake and State Line Lake. The outcomes includes establishing baseline data for the associated sample site.
The Chippewa River Watershed Project will work with local partners, such as Land Stewardship Project, soil and water conservation districts, and the Natural Resources Conservation Service, to restore water quality in Lake Gilchrist, Simon Lake, Lake Johanna and in Mud Creek, and to protect unimpaired water resources in the watershed. This will be done through implementation of Best Management Practices focusing on the reduction of phosphorous, sediment, and runoff in the landscape, primarily by increasing the landscape's ability to retain water.
The lack of sewage treatment in many small communities in Southeast Minnesota is causing surface water and groundwater pollution. Ten of these small communities will be the target of the technical assistance provided by this project. These communities have community or individual straight pipes which are discharging raw sewage directly into the environment, surfacing sewage, or have sewage contaminating groundwater.