The AgBMP Loan Program provides needed funding for local implementation of clean water practices at an extremely low cost, is unique in its structure and is not duplicated by any other source of funding.The AgBMP loan program provides 3% loans through local lenders to farmers, rural landowners, and agriculture supply businesses.
This project will support a civic engagement cohort that will be offered in southwest Minnesota to foster partnering and build capacity of local government, organizations, and residents for effective civic engagement in water protection and restoration. This project will also build networks and the skill set of local resource professionals to do effective civic engagement work for water restoration and protection. The cohort will be administered through the Minnesota River Board (MRB), established in 1995 with a goal of focusing water management efforts on the local level.
This project will provide fiscal resources for South St. Louis County Soil and Water Conservation District (SSLCSWCD) to participate and lead efforts to attain geomorphic data sets, dissolved oxygen assessments, culvert inventory, and civic engagement activities in three major watersheds, Nemadji River, South Lake Superior and St. Louis River. This work is currently being worked on as a part of the MPCA’s Watershed Restoration and Protection Planning efforts.
This project is the continuation of efforts to restore and protect watersheds and streams in Minnesota’s Lake Superior coastal region. The project provides the means to evaluate water quality impairments, complete pollutant source assessments, establish loading capacities and allocations for impairments, and to evaluate and recommend protection strategies for high quality water resources. It also leverages and encourages adoption of locally driven solutions to watershed management and protection.
Minnesota Pollution Control Agency (MPCA) Watershed Pollutant Load Monitoring Network (WPLMN) requests assistance from local partners to collect samples and field data at designated stream monitoring sites for the purpose of assessing water quality and calculating annual pollutant loads.
The goal of this project is to construct, calibrate, and validate three HSPF watershed models. The project will result in HSPF models that can readily be used to provide information to support conventional parameter TMDLs. The models are expected to generate predicted output timeseries for hydrology, sediment, nutrients, and dissolved oxygen which are consistent with available sets of observed data.
The goal of this project is to extend the existing HSPF models through 2012 in the Chippewa Watershed (07020005) and Hawk-Yellow Medicine Watershed (07020004) to incorporate recent monitoring data to support current MPCA business needs and sediment source investigations.
Demand for Engineering services in Northeast Minnesota's nine-county Area III Technical Service Area is exceeding the capacity to deliver the needed services. There are increased requests from Soil and Water Conservation Districts for engineering needed to design and install Best Management Practices in part due to requests related to Clean Water Fund projects. These funds will be used to hire an engineer, which will increase engineering capacity and result in the completion of at least five additional projects per year.
The Minnesota River Basin Hydrological Simulation Program FORTRAN (HSPF) models simulate sediment erosion and transport, however these models periodically need to be adjusted to be consistent with the most recent sources of information regarding sediment distribution and loading rates. The goal of this project is to refine the sediment source partitioning and simulation in the Minnesota River basin using all relevant available sources of information.
The Minnesota River Basin Hydrological Simulation Program FORTRAN (HSPF) models, which simulate flow and pollutant transport, need to be refined to be consistent with the most recent external sources of land use, hydrologic response, and surface flow attributions. The primary goal of this work is to refine the hydrologic calibration in the Minnesota River basin.
This project will gather watershed data necessary for the development of a comprehensive watershed management plan with parameter-specific thresholds that will maintain or improve water quality for the Kawishiwi Watershed.
Improved levels of civic engagement and community participation in support for the Watershed Restoration and Protection Strategy (WRAPS) processes in the St. Louis River, Lake Superior South, and Cloquet River Watersheds. Monitoring plans and compiled field data will be provided and summarized that will aid in the future completion of Total Maximum Daily Load Reports (TMDLs) in these watersheds and in the Lake Superior North Watershed.
When completed, this Lake County-wide culvert inventory project will have multiple direct benefits to water quality protection, natural resource planning, and municipal asset protection. This inventory will be used to provide local and state authorities accurate information on the condition of road crossings, better calibrate hydrological modeling tools crucial to the inter-agency Watershed Restoration and Protection Strategies (WRAPS) process, and assess how road crossings in Lake County are affecting the water and sediment transport capacity of our waterways.
This project will provide a protocol for prioritizing sites in the St. Louis Area of Concern (AOC ) for restoration based on site-specific bioavailability considerations. Despite large data collection efforts focused on sediment chemistry, the extent to which sediment with moderate levels of contamination is available for uptake into biota and therefore contributing to Beneficial Use Impairments (BUI)s is still largely unknown.
The St. Louis River Area of Concern (SLRAOC) conservation partners are focused on removing Beneficial Use Impairments (BUI) in the estuary and eventually delisting the SLRAOC. Cooperative efforts between multiple resource agencies and regional stakeholders have identified a host of restoration objectives, developed project support activities, and partially secured funding that includes a state commitment through the Minnesota Clean Water Fund.
The St. Louis River Area of Concern (SLRAOC) conservation partners are focused on removing Beneficial Use Impairments (BUI) in the estuary and eventually delisting the SLRAOC. Cooperative efforts between multiple resource agencies and regional stakeholders have identified a host of restoration objectives, developed project support activities, and partially secured funding that includes a state commitment through the Minnesota Clean Water Fund.
The St. Louis River watershed is one of the largest watersheds in northern Minnesota and the largest single contributing watershed to Lake Superior. Surface waters are abundant with 353 lakes and 97 streams segments. Large areas of forest and wetlands help to sustain areas of exceptional water quality. However, land use changes have degraded many lakes, rivers, and streams. 21 stream reaches have aquatic life impairments, as identified by high turbidity (1 reach), poor quality aquatic macro-invertebrate community (16 reaches), and/or poor quality fish community (12 reaches).
This project will provide technical, planning and engineering assistance to the MPCA for the development and implementation of the St. Louis River Remedial Action Plan (RAP). USACE and USEPA in partnership with the MPCA will administer work plans to complete a sediment assessment for Minnesota areas within Superior Bay, St. Louis Bay, Lower St. Louis River and the Upper St. Louis River, encompassing approximately 5,349 acres of the St. Louis River and Estuary.
This project addresses five reaches of the Minnesota River that have aquatic recreation impairments as identified by high concentrations of E. coli. The project will describe the water quality impairments, complete pollutant source assessments, establish loading capacities and allocations for the impairments, and develop implementation strategies.
This project addresses five reaches of the Minnesota River that have aquatic recreation impairments as identified by high concentrations of E. coli. The project will describe the water quality impairments, complete pollutant source assessments, establish loading capacities and allocations for the impairments, and develop implementation strategies.
This project supports monitoring and assessment activities by MPCA EAO staff and includes lab analysis, equipment, and fieldwork expenses associated with monitoring and assessment activities.
Lake Monitoring: Lakes are monitored for nutrients, clarity and other information to provide the data needed to assess the aquatic recreation use support.
This project supports monitoring and assessment activities by MPCA EAO staff and includes lab analysis, equipment, fieldwork, data management, and interpretation expenses associated with monitoring and assessment activities.The ambient groundwater monitoring network describes the current condition and trends in Minnesota's groundwater quality.
This project supports monitoring and assessment activities by MPCA EAO staff and includes lab analysis, equipment, fieldwork, data management, and interpretation expenses associated with monitoring and assessment activities.The ambient groundwater monitoring network describes the current condition and trends in Minnesota's groundwater quality.
The Minnesota Department of Natural Resources will coordinate the collection of high-resolution elevation data for northeastern portion of Minnesota using Light Detection and Ranging (LIDAR) systems. The geographic area of the work includes Minnesota counties of Carlton, Cook, Lake, and St. Louis Counties and that portion of Koochiching County that comprises Voyageurs National Park.
The goal of this project is to refine the nutrient and algae simulation in the Minnesota River basin using all relevant available sources of information. The outcome of this work order is a revised Hydrological Simulation Program – FORTRAN (HSPF) watershed model application for the Minnesota River basin that correctly represents nutrient sources and algae.
The objective of this sampling plan is to quantify the inputs and outputs of methyl-mercury in the St. Louis River. Mercury can be bound to organic carbon or suspended solids; therefore, it is necessary to determine loadings of them as well. To get loadings, this sampling plan includes event and base flow monitoring at key tributaries to the St. Louis River and at stations within the St. Louis River.
Approximately 70 percent of all Minnesotans rely on groundwater as their primary source of drinking water. Wells used for drinking water must be properly sealed when removed from service to protect both public health and Minnesota’s invaluable groundwater resources. The Minnesota Department of Health protects both public health and groundwater by assuring the proper sealing of unused wells.
Clean Water funds are being provided to well owners as a 50% cost-share assistance for sealing unused public water-supply wells.
This project will augment data collection efforts for the Lake Superior South, Cloquet, St. Louis River, and Duluth Urban Watershed Restoration and Protection Strategy (WRAPS) projects. Activities include: attaining datasets for watershed stressors and geomorphic conditions, water quality gap monitoring, and civic engagement. The Minnesota Pollution Control Agency has been collaborating with the South St. Louis Soil and Water Conservation District (SWCD) to complete WRAPS related technical and civic engagement work in the Lake Superior basin for the past five years.
This project will provide complementary (same year) physical and chemical data sets for three MPCA prioritized lakes in NE Minnesota to incorporate into the overall State database for MPCA assessment purposes as well as research purposes.